

1st December 2021

To,
The Director,
Ministry of Environment & Forests,
Regional Office, (WCZ),
Ground Floor, East Wing,
New Secretariat Building,
Civil Lines, Nagpur – 440001

Ref: Environmental Clearance File No. J-11011/20/2017-IA-II (I) dated 12th April 2018 granted by MOEFCC, Govt. Of India.

Dear Sir,

Subject: Expansion project of Innovassynth Technologies (I) Limited for manufacturing of Synthetic Organic Chemicals – Seventh progress/ Status Report EC Compliance

We have received the Environment Clearance from Ministry of Environment, Forest & Climate Change (MOEFCC), Government of India on 12th April 2018 for our Project, after that we have made compliances as per requirement.

We are submitting herewith the details of our project during the period of April 2021 to September 2021. Please consider it as a Seventh EC compliance report.

With this reference we wish to submit the details required as below:

- 1. Current status of Project.
- 2. Point wise compliance to stipulation as laid down by ministry.

We hope you will find same in line with your requirements.

Thanking You,

For Innovassynth Technologies (I) Limited

Authorized \$ignatory

1. Pre	esent Status o	f Project:			
Д	All existing Pro	jects are con	npleted.		

2. Point by Point comment on Environment Clearance letter

Sr No	Terms and conditions in EC	Compliance
i	Consent to Establishment/Operate for the Project shall be obtained from the State Pollution Control Board as required under the Air (Prevention and Control of Pollution) Act 1981 and the Water (Prevention and Control of Pollution) Act 1974.	Consent for establishment is in place – Annexure-1
ii	As already committed by the project proponent, Zero Liquid Discharge shall be ensured, and no waste/treated water shall be discharged outside the premises.	Zero Liquid Discharge unit is in place and operational meeting regulations.
iii	Necessary authorization required under the Hazardous and Other Wastes (Management and Trans-Boundary Movement) Rules, 2016, Solid Waste Management Rules, 2016 shall be obtained and the provisions contained in the Rules shall be strictly adhered to.	We have already taken permission from MWML and certificate valid up to 31st March 2022. – Annexure -II
iv	National Emission Standard for Organic Chemicals Manufacturing Industries issued by the Ministry vide G.S.R. 608(E) dated 21 st July 2010 and amended from time to time shall be followed.	Followed as per requirement.
V	To control source and the fugitive emission, suitable pollution control devices shall be installed to meet the prescribed norms and / or the NAAQS. The gaseous emission shall be dispersed through stack of adequate height as per CPCB/SPCB guidelines	Site is equipped with scrubbers to treat gaseous emission - Annexure-III
vi	 Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) The condensers shall be provided with sufficient HTI and residence time so as to achieve more than 98% recovery. (d) Solvents shall be stored in a separate 	 a) Reactors are connected with chilled brine condenser system. b) All the solvent pumps are provided with mechanical seals to prevent leakages. c) Condensers with sufficient HTI provided to achieve 98% recovery. d) Solvents are stored in designated area with all safety measures. e) Proper earthing is provided to the equipment's handling solvents.

	space specified with all safety measures. (e) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (f) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breath valve to prevent losses. (g) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.	f) Entire plant is provided with flameproof machinery. The solvent storage tanks are provided with breather valves. g) Vent condenser provided to the storage tanks.
vii	Total freshwater requirement shall not exceed 1042 cum/day to be met from Patalganga river, prior permission in this regard shall be obtained from the concerned regulatory authority/CHWA	As per the guidelines, site is consuming water within the stipulated quantity i.e 1042 cum/day- Annexure-IV (Water bill for the last 3 months is attached)
viii	Process effluent/any wastewater shall not be allowed to mix with storm water, Storm water drain shall be passed though guard pond.	Proper storm water drains are provided at site with guard pond.
ix	Hazardous chemicals shall be stored in tanks, tank farms, drums, carboys etc. Flame arresters shall be provided on tank farm, and solvent transfer through pumps.	All hazardous chemicals are stored in tanks, tank farms, drums, carboys etc. Flame arresters are already provided on tank farm, and solvents are transfer through pumps. Annexure -V (Photographs are attached)
х	Process organic residue and spent carbon, if any shall be sent to cement industries. ETP sludge, process inorganic & evaporation salt shall be disposed off to the TSDF.	All hazardous waste is sent to TSDF, MWML. (Mumbai Waste Management, Taloja). Annexure VI (Last one manifest of each category are attached)
xi	The Company shall strictly comply with the rules and guidelines under Manufacture, Storage and import of Hazardous Chemicals (MSIHC) Rules, 1989 as amended time to time. All transportation of Hazardous Chemicals shall be as per the Motor Vehicle Act (MVA), 1989.	The Company is strictly complying with the rules and guidelines under Manufacture, Storage and import of Hazardous Chemicals (MSIHC) Rules, 1989 as amended time to time. All transportation of Hazardous Chemicals are as per the Motor Vehicle Act (MVA), 1989.
xii	The company shall undertake waste minimization measures as below: - (a) Metering and control of quantities of active ingredients to minimize waste. (b) Reuse of by-products from the	Followed as per the requirement. (a) All raw materials are metered and controlled for its quantities to minimize waste.

	process as raw materials or as raw material substitutes in other process. (c) Use of automated filling to minimize spillage (d) Use of close Feed system into batch reactors. (e) Venting equipment through vapour recovery system (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.	 (b) Recovered Solvents are reused in processes. (c) Pumps are used to transfer liquids in closed pipelines. (d) Closed hoppers are provided for solid material charging in reactors. (e) Vent Condensers are provided as secondary condensers for vapour recovery. (f) High Pressure Hoses are used wherever required.
xiii	The green belt of at least 5-10 m width shall be developed in more than 33% of the total project area, mainly along the plant periphery, in download wind direction and along roadsides etc. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department.	Site is having greenbelt area of 80808 m ² (33% of total plot area). Total 15000 trees are surrounding production plants. Annexure – VII Plantation photographs are attached
xv	At least 2.5% of the total project cost shall be allocated for Enterprise Social Commitment based on public hearing issues and item-wise details along with time bound action plan shall be prepared and submitted to the Ministry's Regional Office.	The Company has spent Rs. 59.13 Lakhs for ESR activity as against amount of Rs. 102.74 Lakhs which the company is liable to spend based on its capital investment as on 30 th September 2021 (which is 2.5% of invested amount). Company has initiated the measures to spend the balance amount of Rs. 43.61 Lakhs. Annexure-VIII (status of projects are attached).
xvi	For the DG sets, emission limits and the stack height shall be in conformity with the extant regulations and the CPCB guidelines. Acoustic enclosure shall be provided to DG set for controlling the noise pollution.	For the DG sets are provided with proper stack height as per CPCB norms & acoustic enclosure. Annexure -IX (DG emission monitoring reports are attached)
xvii	The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.	Firefighting system is in place – Annexure-X

	Firefighting system shall be as per the norms.	
xviii	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Employee medical health checkup is carried out on regular basis Annexure -XI (Medical report attached)
xix	Storage of raw materials shall be either stored in silos or in covered areas to prevent dust pollution and other fugitive emissions.	The raw materials are stored in storage areas
xx	The energy sources for lighting purpose shall preferably be LED based A minimum of 10-20% of the total power requirement for the industrial operations shall be met from non-conventional energy resources/solar/supply.	Site has installed with LED lightings – Annexure-XII (Energy saving report attached)
xxi	Continuous online (24x7) monitoring system for stack emission shall be installed for measurement of fuel gas discharge and the pollutants concentration and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.	The Site has installed online monitoring system i.e. web camera with night vision capability and flow meters.
Othe	er General Conditions	
i	The project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board, Central Pollution Control Board, State Government and any other statutory authority.	Annual returns in Form-4 as required will submitted to MPCB and Form -5. Consent to establish & operate obtained from MPCB. (We have received the CTO & CTE from MPCB and we are strictly adhered to the stipulations, terms & conditions mentioned herein.) Annexure XIII (Form 4 and form 5 is attached)
ii	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forest and Climate change. In case of deviation or alterations in the project proposals from those submitted to this Ministry for clearance a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add	Agreed.

	additional environment protection	
	measures required if any.	
iii	The locations of ambient air quality monitoring stations shall be decided in consultation with the State Pollution Control Board (SPCB) and it shall be ensured that at least one station each is installed in the upwind and downwind direction as well as where maximum ground level concentrations are anticipated.	Periodic monitoring done; reports are attached. Annexure XIV- AAQM reports is attached)
iv	The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R No. 826(E) dated 16 th November 2009 shall be followed.	Site is monitoring ambient air quality as per the regulations and reports are attached.
v	The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act,1986 Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time)	Site is meeting set noise level standards. Annexure-XV (Noise monitoring report attached)
vi	The Company shall harvest rainwater from the roof tops of the buildings and storm water drains to recharge the ground water and use the same water for the process activities of the project to conserve fresh water.	Rainwater harvest implemented. Annexure XVI- (Details of rainwater harvesting)
viii	The company shall also comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environment management, and risk mitigation measures relating to the project shall be implemented.	Site is meeting the said requirements.
ix	The Comply shall undertake all relevant measures for improving the socio-economic conditions of the surrounding area. ESC activities shall be undertaken by involving local villages and administration.	We have already started ESC activities in local surrounding villages.

х	The company shall undertake eco- developmental measures including community welfare measures in the project are for the overall improvement of the environment.	Noted & Agreed
xi	The company shall earmark sufficient funds towards capital cost and recurring cost per annum to implement the conditions stipulated by the Ministry of Environment, Forest and Climate Change as well as the State Government along with the implementation schedule for the conditions stipulated herein. The funds so earmarked for environment management/pollution control measures shall not be diverted for any other purpose.	The company is committed to follow the guidelines.
xii	A copy of the clearance letter shall be sent by the project proponent to concerned Panchayat, Zilla Parishad/Municipal Corporation, Urban local Body and the local NGO, if any, from whom suggestions/representations, if any were received while processing the proposals.	Noted & Agreed We have not received any suggestions and representations while processing the proposals from concerned Panchayat, Zilla Parishad/ Municipal Corporation, Urban local and the local NGO. Hence this clearance copy not given to them.
xiii	The project proponent shall also submit six monthly reports on the status compliance of the stipulated Environment Clearance conditions including results of monitored data (both in hard copies as well as by email) to the respective Regional Office of MoEF & CC, the respective Zonal Office of CPCB and SPCB. A copy of Environment Clearance and six-monthly compliance status report shall be posted on the website of the company.	This is 7 th half yearly report.
xiv	The environmental statement for each financial year ending 31st March in Form – V as is mandated shall be submitted to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986 as amended subsequently, shall also be put on the website of the company along with the status of compliance of environment	Form - V is submitted to MPCB regularly. Status of compliance of EC is already put on company website along with EC Letter and also sent to Regional Offices of MOEF&CC by email.

	clearance conditions and shall also be sent to the respective Regional Offices of MoEF&CC by e-mail.	
xv	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be sent at Website of the Ministry at http:/moef.nic.in. This shall be advertised within seven days from the date of issues of the clearance letter, at least in two local newspaper that are widely circulated in the region of which one shall be in the vermicular languages of the locality concerned and a copy of the same shall be forwarded to the concerned Regional Office of the Ministry.	The advertisement of the obtained Environmental clearance was published in the newspapers, Loksatta (Marathi) dated 27 th April 2018 and Indian Express (English) dated 27 th April 2018. Annexure – XVII
xvi	The project authorities shall inform the Regional Office as well as the ministry the data of financial closer and final approval of the project by the concerned authorities and the date of start of the project.	We have already taken CTE & CTO from Maharashtra Pollution Control Board (MPCB). We have already informed to the ministry and Regional Office of MOEF&CC about the project start in the in vide letter dated 04/09/2018.

Enclosures:

Sr. No.	Annexure no.	Description of Document
1	Annexure I (a)	Consent to Establish
2	Annexure I (b)	Consent to Operate
3	Annexure II	Mumbai Waste Management Ltd, Membership Certificate
4	Annexure III	Scrubber List
5	Annexure IV	Water Bills
6	Annexure V	Tank Pharm Photograph
7	Annexure VI	Hazardous waste Manifest
6	Annexure VII	Green Belt and Plantation Photographs
8	Annexure VIII	ESR Activity
9	Annexure IX	DG Emission monitoring report
10	Annexure X	Fire Fighting system details
11	Annexure XI	Medical Report
12	Annexure XII	Energy Saving Report
13	Annexure XIII (a)	Form 4 – Hazardous waste return
14	Annexure XIII (b)	Form 5- Environment statement
15	Annexure XIV	Ambient Air Quality Monitoring reports
16	Annexure XV	Noise Monitoring Reports
17	Annexure XVI	Details of Rainwater Harvesting
18	Annexure XVII	Newspaper Publication

Annexure I (a) Consent to Establish

MAHARASHTRA POLLUTION CONTROL BOARD

4010437/4020781 Phone :

/4037124/4035273

24044532/4024068 /4023516

enquiry@mpcb.gov.in Email:

Visit At : http://mpcb.gov.in

Kalpataru Point, 3rd & 4th floor, Sion- Matunga Scheme Road No. 8, Opp. Cine Planet Cinema, Near

Sion Circle, Sion (E), Mumbai - 400 022

RED/LSI

Fax

Consent order No: - BO/CAC-Cell/UAN No. 0000034517-17/CAC-1803001496 Date- 31 3 2018

To, M/s Innovassynth Technologies (I) Ltd, Survey No 9-24, Wasrang 34-36,

Chinchwadi, at-Khopoli, Tal-Khalapur, Dist-Raigad

Subject: Consent to Establish for expansion under RED Category

: 1. Existing Consent to operate granted vide no. BO/CAC-Cell/UAN No. 0000015113/7th CAC/17030001997 dtd 27.03.2017 which is valid upto 30.08.2018.

2. Minutes of CAC meeting held on 09.02.2018.

Your application: 0000034517

Dated: 05.10.2017

For: Consent to Establish for expansion under Section 25 of the Water (Prevention & Control of Pollution) Act, 1974 & under Section 21 of the Air (Prevention & Control of Pollution) Act, 1981 and Authorization under Rule 6 of the Hazardous and Other Wastes (M & T M) Rules 2016 is considered and the consent is hereby granted subject to the following terms and conditions and as detailed in the schedule I, II, III & IV annexed to this order:

- 1. The consent is granted for a period up to commissioning of unit or 5 years whichever is earlier
- 2. The proposed capital investment of the industry is Rs.153.00 Crs. (existing CI-Rs. 79.07 Crs + Expansion CI-Rs. 153 Cr i.e. total CI after expansion will be Rs. 232.07 Crs. as per Undertaking submitted by industry)

3. The Consent is valid for the manufacture of -

Sr. No.	Name of Product	Existing Quantity (Ton/M)	Existing Product to be deleted (Ton/M)	Existing Product to be Reduced (Ton/M)	Existing Product to be Increased (Ton/M)	Total Product QTY Ton/M
1	4–Fluoro Isoquinoline	0.0084	7.53	0.0034		0.0050
2	Isosulfan Blue (2,5– Disulfophenyl Isomer)	0.0084	550	7.75	0.0016	0.0100
3	(Diethoxy Methyl)- 2-Ethoxy Benzene	0.0840	0.0840		STATE:	0.0000
4	2,4-Dimethoxy Aniline	0.1670	0.1670			0.0000
5	2,6-Dimethyl Phenyl Isothiocyanate	0.1670	0.1670	***	(444.)	0.0000
6	Benzoic Acid,4-(4- Propyl-1-	0.1670	0.1670			0.0000

M/s Innovassynth Technologies (I) Ltd, Raigad-II/R/L/0000034517

Page 1 of 13

Sr. No.	Name of Product	Existing Quantity (Ton/M)	Existing Product to be deleted (Ton/M)	Existing Product to be Reduced (Ton/M)	Existing Product to be Increased (Ton/M)	Total Product QTY Ton/M
	Piperazinyl)					
7	2-(4-Morpholinyl)-8- Phenyl-[4H-1] - Benzopyran-4-one	0.0084				0.0084
8	9, 10-Dihydro-10 [2, 3di (Hydroxycarboxyl) Propyl]-9- oxa-10- Phosphaphenanth rane-10-oxide (DDP)	0.0420	0.0420			0.0000
9	Cyclopropyl Methyl Bromide (CMB)	0.0840			0.916	1.0000
10	5'-ODMT-NiBu- Deoxyguanosine- 3'- (2-cyano ethyl N, N Diisopropy lamino) Phosphoramidite (dG Amidite)	0.0420	0.0420			0.0000
11	5'-ODMT-NBZ- Deoxyadenosine- 3'- (2-cyano ethyl N, N Diisopropylamino) Phosphoramidite (dA Amidite)	0.0420	0.0420	**************************************		0.0000
12	5'-ODMT-NBZ- Deoxycytidine-3'- (2-cyano ethyl N,N Diisopropylamino) Phosphoramidite (dC Amidite)	0.0420	0.0420			0.0000
13	5'-ODMT-NBZ- Deoxythymidine- 3'-(2-cyano ethyl N,N Diisopropylamino) Phosphoramidite (dmt- T)	0.0420	0.0420			0.0000
14	3'-Amino-5' OH Thymidine (Amino – T)	0.0084		0.0079		0.0005
15	Bis (n- butylcyclopentadi enyl) Zirconium Dichloride	0.0420	0.0420			0.0000
16	rac-Ethylene- bis(Indenyl)Zircon ium Dichloride	0.0420	0.0420	•••	77.5	0.0000
17	Substituted Triazine	50.0000			25.00	75.0000

 ${\it M/s~Innovassynth~Technologies~(I)~Ltd, Raigad-II/R/L/0000034517}$

Page 2 of 13

Sr. No.	Name of Product	Existing Quantity (Ton/M)	Existing Product to be deleted (Ton/M)	Existing Product to be Reduced (Ton/M)	Existing Product to be Increased (Ton/M)	Total Product QTY Ton/M
	Derivative					
18	Ethyl 2-Methyl-4- Pentenoate (EMPE)	0.0833		0.0750		0.0083
19	Ethyl-4-Pentenoate	0.0833		0.0750		0.0083
20	Norcamphor	0.0166	men.			0.0166
21	5-Bromo-Indole	0.3330		0.3030		0.0300
22	4-Pentenoic Acid	0.8333	***		1.1667	2.0000
23	Methyl Tiglate	0.0166	2422			0.0166
24	Ethyl-2-Methyl 3-4- Pentadienoate (EMPD)	0.5000		0.4990		0.0010
25	3-3 Dimethyl Cyclohexanone (DMCH)	0.0833			0.9167	1.0000
26	2-6 Diamino-9-(b-D- Ribo) Purine (DAP)	0.0500		0.0450	1/12	0.0050
27	DMT-MOET(4,4'- Dimethoxy trityl)- (Methoxyethyl- thymidine)	0.0833	0.0833	200		0.000
28	N-Bz-DMTMOEC (N-Benzoyl-(4,4'- Dimethyoxytrityl)(M ethoxy ethyl)- cytidine	0.0833	ioji,			0.0833
29	N-Bz-DMT-Dc (N- Benzoyl-(4,4'- Dimethyoxytrityl)- Dooxy cytidine	0.0833	0.0833			0.000
30	N-Benzoyl – 3 – Tritylamino 5 Phosphoramidite 2 – deoxy Adenosine (dA)	0.0040	000	0.0035		0.0005
31	3 – Tritylamino 5 – Phosphoramidite N- Bz-Dc	0.0040		0.0035		0.0005
32	N – Isobutyryl – 3- Tritylamino 5 – Phosphoramidite 2 – deoxy Guanosine (dG)	0.0040		0.0035		0.0005
33	3 – Tritylamino 5 – Phosphoramidite Thymidine (dT)	0.0040		0.0035	***	0.0005
34	4-Methyl –2- Thiomethyl Pyrimidine	0.4170	***	0.3770		0.0400
3 5	4-Hydroxy Isoleucine	3.3330		3.2330		0.1000
36	4-Hexyl Resorcinol	0.4160			1.584	2.0000
37	N ² Phenyl Acetyl	0.0416		0.0376		0.0040

Page 3 of 13

Sr. No.	Name of Product	Existing Quantity (Ton/M)	Existing Product to be deleted (Ton/M)	Existing Product to be Reduced (Ton/M)	Existing Product to be Increased (Ton/M)	Total Product QTY Ton/M
	Guanosine			The State of	1	
38	5' – ODMT, 2' – O – Cpep, 6N – Pivaloyl Adenosine	0.0080		0.0070		0.0010
39	5' – ODMT, 2' – O – Cpep, N ² – Ph – Ac - Guanosine	0.0080		0.0070		0.0010
40	5' - ODMT, 2' - O - Cpep, 4 - N - Bz Cytidine	0.0080	292	0.0070		0.0010
41	5' – ODMT, 2' – O – Cpep, Uridine	0.0080		0.0070	-3	0.0010
42	p-Nitro Phenyl Phosphate – Disodium Salt Hexahydrate	0.0833			0.1167	0.2000
43	p-Nitro Phenyl Phosphate – Ditris Salt	0.0833		0.0733		0.0100
44	5'-ODMT-2'Moe-T[5'-0 (4,4'-Dimethoxy Trityl) – 2'-0-(2- Methoxyethyl) – Thymidine]	0.0580	10/1/2		0.942	1.0000
45	N – BZ – 5' – ODMT – 2' – MOE – 5 – Me – C 5'-0 (4,4'- Dimethoxy Trityl)– 2'-0-(2-Methoxyethyl) N ⁴ –Benzoyl–5- Methyl- Cytidine	0.0300) }}		0.97	1.0000
46	2' - Fluro Cytidine 5'-0-{4,4'- Dimethoxy Trityl)N ⁴ -Acetyl-2' Fluoro Cytidine-3'- [C2-Cyanoethyl)- (N,N-DI Isopropyl)]- Phosphoramidite	0.0020	0.0020			0.000
47	2' – FU amidite 5'-0- (4,4'-Dimethoxy Trityl)-2'-Fluoro Uridine-3'-[(2- Cyanoethyl)-(N,N-DI Isopropyl)]- Phosphoramidite	0.0020				0.0020
48	5'-DMT-2'-Otbdms- RNA Phosphoramide and Derivatives	0.0042			0.3958	0.4000
49	EURO-5031 BLS	0.0420	0.0420	0	***	0.000

Page 4 of 13

Sr. No.	Name of Product	Existing Quantity (Ton/M)	Existing Product to be deleted (Ton/M)	Existing Product to be Reduced (Ton/M)	Existing Product to be Increased (Ton/M)	Total Product QTY Ton/M
	Dicyclo					
	Pentadienezer					
	Conium Dichoride	0.1050	0.1050			0.000
50	2 Cyanophenol	0.1670 0.0084	0.1670 0.0084			0.000
51	Calone [7-Methyl- 3,4-Dihydro-2H-1,5- Benzo Dioxepin-3- 1	0.0064	0.0064		***	0.000
52	Sodium Beta Glycero Phosphate	1.6600		0.6600		1.0000
53	7-Bromo 1 Heptene	0.2200			3.78	4.0000
54	2,2 BIS [-(2 Indenyl) Biphenyl] Zicronium (IV) Chloride	0.0100		1222	0.04	0.0500
5 5	L-Methioninine Sulfoxime	0.0100			11. 11.	0.0100
56	4, 4' Dimethoxytrityl Chloride (DMT-CL)	0.1500	·		0.85	1.0000
57	AD-Lactone	0.3000	0.3000	- 	((e.a))	0
58	1-Cyano Cyclobutane-1,2- Dicarboxylic Acid Dimethyl Easter / Transdiacid	0.2000	30		0.2	0.4000
59	5'-DMT-C-ETHYL N- Protected Nucleoside & Phosphoramidite	0.0100	0.0100	(888)		00.0000
60	5'-DMT-C-ETHYL N- Protected Nucleoside & Phosphoramidite	0.0100		***	0.0204	0.0304
61	NAP Sugar	0.0500			0.95	1.0000
62	ENA -Protected Nucleoside & Phosphoramidite	0.0100		0.0090		0.0010
63	E-Tetracetate	0.0500			0.15	0.2000
64	TAC Protected Necleeoside & Phosphoramidite	0.0100	***	(***)	0.04	0.0500
65	5'-DMT-2'-MOE Protected Nucleoside & Phosphoramidite	0.0200		3===	0.38	0.4000
66	5'-DMT-2'-O-Methyl Protected Nucleoside & Phosphoramidities	1		s===s	0.19	0.2000
67	Allofuranose Sugar	0.0100			XI TO	0.0100
68	Tinuvin -400	27.865			72.1352	100
69	N-Methyl 4 chloro piperridine HCL	1.0000	1.0000		3 7.5.4 .	0.0000
70	Syringaldehyde	2.0000	2.0000			0.0000

Page 5 of 13

Sr. No.	Name of Product	Existing Quantity (Ton/M)	Existing Product to be deleted (Ton/M)	Existing Product to be Reduced (Ton/M)	Existing Product to be Increased (Ton/M)	Total Product QTY Ton/M
71	Indoline	2.0000	2.0000		1222	0.0000
72	2 methyl Sulphonyl 4,6 Dimethoxy Pyrimidine	3.0000	3.0000			0.0000
73	O- Methyl Isourea Hemisulphat6e	2.0000	2.0000	122		0.0000
74	Beta-Methyl Acid (BMA)	2.0000	2.0000	***		0.0000
	Total	100.5765	13.5750	5.4402	110.7451	192.3134

		New Pro	oducts to be	added		
75	P-Anisyl Propanal		(+++)		100 T 100	4.000
76	Anethol			1	N(11)	30.00
77	5'-ODMT- Deoxynucleosides, Phosphoramidites and Succinate Salts		****		2 =	0.200
78	DMT-LNA- Nucleosides and phosphoramidites					0.100
79	Galnac Acyclic Succinate	HHH	-			0.0028
80	Nootkatone	17.55	. 10			0.4000
81	4-Aminobenzonitrile					0.1660
82	Diethyl L-(+) tartrate	225, 1				0.1660
83	DL -Lactide		i			0.0083
84	Diethylaminomalona te Hcl	(0))			0.2500
85	Acrylamide Purified	V				0.4000
86	Ethylenediaminetetr aacetic Acid Metal Chelate Salts	-	***	***	3705/	0.0030
87	Sodium Selenite Pentahydrate	.TOT			,	0.0030
88	2,4Dihydroxy Benzophenone	1001				89.237
89	Peonile					19.000
90	R&D Products (Intermidiate chemicals)		***		(5555)	0.4000
91	4,5-Dichloro pthalic acid					0.0083
92	4-Tert- butylphenoxyAceticA cid					1.0000
93	6-Bromo-Iso-indolin- 1-one	***	1888			0.0083
94	Trans aconiticAcid					0.0083
95	2,2 BIS [-(2 Indenyl)	2422				2.500

PM

Sr. No.	Name of Product	Existing Quantity (Ton/M)	Existing Product to be deleted (Ton/M)	Existing Product to be Reduced (Ton/M)	Existing Product to be Increased (Ton/M)	Total Product QTY Ton/M
	Biphenyl]ZICronium (IV) Chloride On			(TOD/M)	(1011/11)	
	Sillica Support					
96	N,N-			2517111		4 2222
	Dimethylbenzamide (DMBA)					1.0000
97	4-(methylamino) pentan-2-ol dibenzoate (AB)					1.0000
98	9,9-bis (methoxymethyl)					1.0000
	fluorene (FLU)				175	S.
99	2-AminoBenzonitrile			0222	10 C 11 10 C	1.0000
100	GAFL-158			N	Vine of	5.0000
101	3,5-Bis(2-Cyanoprop- 2-yl)benzyl bromide Anastrazole intermediate		***		1	0.0083
102	3,5-Bis(2-Cyanoprop- 2-yl)Toluene Anastrazole intermediate			-	(8,54)	0.0083
103	2,2'-Azobis(2- methylpropionamidi ne)dihydrochloride		74.		nata.	0.0100
104	CMPT	75				0.0400
105	CMIMT	F \				0.0400
106	MTSCNE					0.1000
107	ONT-7-D & ONT-7-L	g 124				0.1000
108	UNA Phosphoramidites & Derivatives	7				0.0400
109	Morpholino Phosphoramidites & Derivatives					0.1000
110	Chiral Phosphoramidites & Derivatives					0.1000
	5'-ODMT-2' OMe NiBu-Guanosine O6 CE		//	(444)		0.0840
112	Bis TAc dG					0.0840
	5'-ODMT-NiBu- deoxycytidine					0.0500
114	5'-Biotin Phosphoramidite					0.0010
	5-Iodo dC					0.0008
	2'-Fluoro-GiBu-3'- CEPA					0.0008
	5'-ODMT-N6-Bz-2'- Fluoro Adenosine-3'-					0.0008
1/s Inn	ovassynth Technologies (I) Ltd, R	aigad-II/R/L/00	00034517	N		Page 7 of 13

Sr. No.	Name of Product	Existing Quantity (Ton/M)	Existing Product to be deleted (Ton/M)	Existing Product to be Reduced (Ton/M)	Existing Product to be Increased (Ton/M)	Total Product QTY Ton/M
	OCEPA					
118	5'ODMT-NiBu-dG (O6 CE)) :			0.0500
119	Ethyl-2,2- difluoropropionate	1222				0.0416
	The state of the s	KG (ALL LE	Total			157.6866
		Gra	nd Total			350

List of By-Products

Sr. No.	By-Product	Existing (Ton/M)	Proposed (Ton/M)	Total (Ton/M)
1	Hydrochloric Acid 30%	43	465	508
2	Sulphuric Acid 66%	85	100	185
3	Mixed Solvents	133.50	426.50	560
4	Aqueous Aluminum Chloride	303	897	1200
	TOTAL	564.50	1888.50	2453

4. Conditions under Water (P&CP), 1974 Act for discharge of effluent:

Sr. no.	Description	Existing consented quantity of discharge (CMD)	Proposed quantity of discharge (CMD) from expansion	Standards to be achieved	Disposal
1.	Trade effluent	740	172	As per Schedule -I	100% recycle
2.	Domestic effluent	65	18	As per Schedule -I	On Land for Gardening

5. Conditions under Air (P& CP) Act, 1981 for air emissions:

Sr. no.		Number of Stack	Standards to be achieved
1	Boiler-III (10 TPH)	1	As per Schedule -II
2	Boiler-IV (10 TPH)	1	As per Schedule -II
3	Thermopack (2 Lac Kcal/Hr)	1	As per Schedule -II
4	Process Stacks	9	As per Schedule -II
5	DG Set (1000 KVA x 3 Nos.)	3	As per Schedule -II
6	DG Set (500 KVA)	1	As per Schedule -II

6. Conditions about Non Hazardous Wastes:

Sr. no.	Type Of Waste	Proposed Quantity & UoM	Treatment	Disposal
1	Ash from Briquette fired boiler	180 Ton/M	NA	Sale to brick manufacturer
2	Empty Drums	3000 Nos./M	NA	By Sale

rym)

M/s Innovassynth Technologies (I) Ltd, Raigad-II/R/L/0000034517

Page 8 of 13

7. Conditions under Hazardous and Other Wastes (M & TM) Rules, 2016 for treatment and disposal of hazardous waste:

Sr.			Qu	antity in To	n/A	
No.	Type Of Waste	Category	Existing	Proposed	Total	Disposal
1	Used Spent oil	5.1	0.5	1.50	2.0	Sale to Authorized re processor
2	Distillation residue	20.3	212	453	665	CHWTSDF
3	Distillation residue from contaminated organic solvents (solid generated from MEE)	37.3	280	350	630	CHWTSDF
4	Chemical containing residue from decontamination	34.1	1.0	3.0	4.0	Treated in own ETP
5	Chemical sludge from waste treatment plant	35.3	104	296	400	CHWTSDF
6	Discarded containers /bags /liners	33.1		70	70	CHWTSDF
7	Off specification chemicals	28.4	2020	04	04	CHWTSDF

- 8. The Board reserves the right to review, amend, suspend, revoke etc. this consent and the same shall be binding on the industry.
- 9. This consent should not be construed as exemption from obtaining necessary NOC/permission from any other Government authorities.
- 10. Industry shall not take any effective steps without obtaining environmental clearance and shall submit the BG of Rs. 10 lakh towards compliance of the same.
- 11. Industry shall 100% reuse/recycle the treated effluent by providing RO & MEE so as to achieve zero liquid discharge.

For and on behalf of the Maharashtra Pollution Control Board

> (Dr. P. Anbalagan, IAS) Member Secretary

Received Consent fee of -

Sr. No.	Amount (Rs.)	DR. No.	Date	Drawn On
1	Rs. 3,06,000/-	7601258	10.10.2017	Axis Bank

Copy to:

- Regional Officer-Raigad and Sub-Regional Officer-Raigad-I.
 They are directed to ensure the compliance of the consent conditions.
- 2. Chief Accounts Officer, MPCB, Mumbai.
- 3. CC/CAC desk- for record & website up-dation purposes.

Schedule-I Terms & conditions for compliance of Water Pollution Control:

- 1) A] As per your application, you have existing Effluent Treatment Plant (ETP) with the design capacity of 740 CMD consisting of primary, Secondary & Tertiary treatment followed by MEE of design capacity 10 CMD to achieve Zero Liquid Discharge (ZLD). It is also proposed to provide 02 Nos. of RO system of design capacity 360 CMD and 30 CMD respectively and one additional MEE of design capacity 80 CMD for proposed effluent generated from expansion project.
 - B) The treated effluent generated from expansion project shall be 100% recycle/reuse in the process so as to achieve Zero Liquid Discharge. In no case treated effluent shall be disposed of outside factory premises or used for gardening purpose.
- 2) A] As per your consent application, you have provide sewage Treatment system with design capacity 41 CMD.
 - B] The Applicant shall operate the sewage treatment system to treat the sewage so as to achieve the following standards/ prescribed under EP Act, 1986 and Rules made there under from time to time, whichever is stringent.

(1)	Suspended Solids.	Not to exceed	50	mg/l.
(2)	BOD 3 days 27°C.	Not to exceed	30	mg/l.
(2)	COD	Not to exceed	100	mg/l.

- C] The treated sewage shall be used on land for gardening after confirming the above standards. There shall not be any discharge outside factory premises.
- 3) The Board reserves its rights to review plans, specifications or other data relating to plant setup for the treatment of waterworks for the purification there of & the system for the disposal of sewage or trade effluent or in connection with the grant of any consent conditions. The Applicant shall obtain prior consent of the Board to take steps to establish the unit or establish any treatment and disposal system or and extension or addition thereto.
- 4) The industry shall ensure replacement of pollution control system or its parts after expiry of its expected life as defined by manufacturer so as to ensure the compliance of standards and safety of the operation thereof.
- 5) The Applicant shall comply with the provisions of the Water (Prevention & Control of Pollution) Act, 1974 and other provisions as contained in the said act.

Sr. no.	Purpose for water consumed	Water consumption quantity (CMD)
1.	Industrial Cooling, spraying in mine pits or boiler feed	200
2.	Domestic purpose	22
3.	Processing whereby water gets polluted & pollutants are easily biodegradable	247
4.	Processing whereby water gets polluted & pollutants are not easily biodegradable and are toxic	
5	Gardening	

6) The Applicant shall provide Specific Water Pollution control system as per the conditions of EP Act, 1986 and rule made there under from time to time/ Environmental Clearance / CREP guidelines.

Pag

Schedule-II Terms & conditions for compliance of Air Pollution Control:

1. As per your application, you have proposed to install the Air pollution control (APC) system and also proposed to erect following stack (s) and to observe the following fuel pattern-

Sr. No.	Stack Attached To	APC System	Height in Mtrs.	Type of Fuel	Quantity & UoM	S %	SO ₂ Kg/Day
1	Boiler-III (10 TPH)	Multi Cyclone separator, Bag filer	48 (common)	Duignotto	90 TPD	0.6	36
2	Boiler- IV (10 TPH)	Multi Cyclone separator ,bag filer	Briquette 30 TF		tte 30 TPD		30
3	Thermopack (2 Lac Kcal/ Hr.)		12	HSD	600 kg/D	1	12
4	Pilot Plant-8	Scrubber	As per design		(-
5	Production Blocks (7 Nos.)	Scrubber	As per design		ae ^a		
6	ETP Equalization Tank	Scrubber	As per design	-0	<u> </u>		
7	DG Set (1000 KVA) (3 Nos.)	Acoustic Enclosures & stack	As per design	HSD	185 kg/hr each	1	266.4
8	DG Set (500 KVA)	Acoustic Enclosures & stack	As per design	HSD	95 kg/hr	1	45.6

- 2. The Applicant shall provide Specific Air Pollution control equipments as per the conditions of EP Act, 1986 and rule made there under from time to time / Environmental Clearance / CREP guidelines
- 3. The applicant shall operate and maintain above mentioned air pollution control system, so as to achieve the level of pollutants to the following standards:

Particulate matter	Not to exceed	150 mg/Nm ³ .	
HCL	Not to exceed	35 mg/Nm ³ .	

- 4. The Applicant shall obtain necessary prior permission for providing additional control equipment with necessary specifications and operation thereof or alteration or replacement/alteration well before its life come to an end or erection of new pollution control equipment.
- 5. The Board reserves its rights to vary all or any of the condition in the consent, if due to any technological improvement or otherwise such variation (including the change of any control equipment, other in whole or in part is necessary).

Schedule-III Details of Bank Guarantees

Sr. No.	Consen t (C to E)	Amt of BG Imposed	Submis sion Period	Purpose of BG	Complianc e Period	Validity Date
1	CtoE	Rs. 10 lakh	15 days	Industry shall not take any effective steps without obtaining environmental clearance	cou	31.12.2019

M/s Innovassynth Technologies (I) Ltd, Raigad-II/R/L/0000034517

Page 11 of 13

Schedule-IV

General Conditions:

The following general conditions shall apply as per the type of the industry (Product wise).

- The applicant shall provide facility for collection of environmental samples and samples
 of trade and sewage effluents, air emissions and hazardous waste to the Board staff at
 the terminal or designated points and shall pay to the Board for the services rendered in
 this behalf.
- 2) If the MIDC pipeline is broken/ overflowing chamber, in such cases industry shall not discharge their treated effluent into MIDC drain, it shall be sent to CETP by tanker.
- 3) Industry should monitor effluent quality, stack emissions and ambient air quality monthly/quarterly.
- 4) The applicant shall provide ports in the chimney/(s) and facilities such as ladder, platform etc. for monitoring the air emissions and the same shall be open for inspection to/and for use of the Board's Staff. The chimney(s) vents attached to various sources of emission shall be designated by numbers such as S-1, S-2, etc. and these shall be painted/displayed to facilitate identification.
- 5) Whenever due to any accident or other unforeseen act or even, such emissions occur or is apprehended to occur in excess of standards laid down, such information shall be forthwith Reported to Board, concerned Police Station, office of Directorate of Health Services, Department of Explosives, Inspectorate of Factories and Local Body. In case of failure of pollution control equipments, the production process connected to it shall be stopped.
- 6) The applicant shall provide an alternate electric power source sufficient to operate all pollution control facilities installed to maintain compliance with the terms and conditions of the consent. In the absence, the applicant shall stop, reduce or otherwise, control production to abide by terms and conditions of this consent.
- 7) The firm shall submit to this office, the 30th day of September every year, the Environmental Statement Report for the financial year ending 31st March in the prescribed Form-V as per the provisions of rule 14 of the Environment (Protection) (Second Amendment) Rules, 1992.
- 8) The industry shall recycle/reprocess/reuse/recover Hazardous Waste as per the provision contain in the H&OW(M&TM) Rules 2016, which can be recycled/processed/reused/recovered and only waste which has to be incinerated shall go to incineration and waste which can be used for land filling and cannot be recycled/reprocessed etc should go for that purpose, in order to reduce load on incineration and landfill site/environment.
- 9) The industry should comply with the Hazardous and Other Wastes (M & TM) Rules, 2016 and submit the Annual Returns as per Rule 6(5) & 20(2) of Hazardous and Other Wastes (M & TM) Rules, 2016 for the preceding year April to March in Form-IV by 30th June of every year.
- 10) An inspection book shall be opened and made available to the Board's officers during their visit to the applicant.
- 11) The applicant shall obtain Consent to Operate from Maharashtra Pollution Control Board before actual commencement of the Unit/ Activity (in case of Consent to establish).
- 12) The applicant shall make an application for renewal of the consent at least 60 days before the date of the expiry of the consent (in case of Renewal of consent).
- 13) Industry shall strictly comply with the Water (P&CP) Act, 1974, Air (P&CP) Act,1981 and Environmental Protection Act,1986 and industry specific standard under EP Rules 1986 which are available on MPCB website(www.mpcb.gov.in).
- 14) The industry shall constitute an Environmental cell with qualified staff/personnel/agency to see the day to day compliance of consent condition towards Environment Protection.
- 15) Separate drainage system shall be provided for collection of trade and sewage effluents. Terminal manholes shall be provided at the end of the collection system with arrangement for measuring the flow. No effluent shall be admitted in the pipes/sewers downstream of the terminal manholes. No effluent shall find its way other than in designed and provided collection system.

fm

- 16) Neither storm water nor discharge from other premises shall be allowed to mix with the effluents from the factory.
- 17) The applicant shall install a separate meter showing the consumption of energy for operation of domestic and industrial effluent treatment plants and air pollution control system. A register showing consumption of chemicals used for treatment shall be maintained.
- 18) Conditions for D.G. Set
 - a) Noise from the D.G. Set should be controlled by providing an acoustic enclosure or by treating the room acoustically.
 - b) Industry should provide acoustic enclosure for control of noise. The acoustic enclosure/ acoustic treatment of the room should be designed for minimum 25 dB (A) insertion loss or for meeting the ambient noise standards, whichever is on higher side. A suitable exhaust muffler with insertion loss of 25 dB (A) shall also be provided. The measurement of insertion loss will be done at different points at 0.5 meters from acoustic enclosure/room and then average.
 - c) Industry should make efforts to bring down noise level due to DG set, outside industrial premises, within ambient noise requirements by proper sitting and control measures.
 - d) Installation of DG Set must be strictly in compliance with recommendations of DG Set manufacturer.
 - e) A proper routine and preventive maintenance procedure for DG set should be set and followed in consultation with the DG manufacturer which would help to prevent noise levels of DG set from deteriorating with use
 - f) D.G. Set shall be operated only in case of power failure.
 - g) The applicant should not cause any nuisance in the surrounding area due to operation of D.G. Set.
 - h) The applicant shall comply with the notification of MoEF dated 17.05.2002 regarding noise limit for generator sets run with diesel
- 19) The industry should not cause any nuisance in surrounding area.
- 20) The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standard in respect of noise to less than 75 dB (A) during day time and 70 dB (A) during night time. Day time is reckoned in between 6 a.m. and 10 p.m. and night time is reckoned between 10 p.m. and 6 a.m.
- 21) The applicant shall maintain good housekeeping.
- 22) The applicant shall bring minimum 33% of the available open land under green coverage/plantation. The applicant shall submit a statement on available open plot area, number of trees surviving as on 31st March of the year and number of trees planted by September end, with the Environment Statement.
- 23) The non-hazardous solid waste arising in the factory premises, sweepings, etc. be disposed of scientifically so as not to cause any nuisance / pollution. The applicant shall take necessary permissions from civic authorities for disposal of solid waste.
- 24) The applicant shall not change or alter the quantity, quality, the rate of discharge, temperature or the mode of the effluent/emissions or hazardous wastes or control equipments provided for without previous written permission of the Board. The industry will not carry out any activity, for which this consent has not been granted/without prior consent of the Board.
- 25) The industry shall ensure that fugitive emissions from the activity are controlled so as to maintain clean and safe environment in and around the factory premises.
- 26) The industry shall submit quarterly statement in respect of industries' obligation towards consent and pollution control compliance's duly supported with documentary evidences (format can be downloaded from MPCB official site).
- 27) The industry shall submit official e-mail address and any change will be duly informed to the MPCB.
- 28) The industry shall achieve the National Ambient Air Quality standards prescribed vide Government of India, Notification dt. 16.11.2009 as amended.

m

Maharashtra Pollution Control Board

60d06b63b8d6bd7fab501ad8

Annexure I (b) Consent to Operate

MAHARASHTRA POLLUTION CONTROL BOARD

Tel: 24010706/24010437

Fax: 24023516

Website: http://mpcb.gov.in Email: cac-cell@mpcb.gov.in

Kalpataru Point, 2nd and 4th floor, Opp. Cine Planet Cinema, Near Sion Circle, Sion (E), Mumbai-400022

RED/L.S.I (R22)

No:- Format1.0//UAN No.0000104447/CO - 2106000958

To.

M/s Innovassynth Technologies (India) Limited, Revenue Survey No. 9 - 24, Wasrang 34-36, Chinchwali at Khopoli, Tal. Khalapur, Dist. Raigad -410203.

Sub:

Grant of Consent to 1st Operate (Part-II) for expansion & Amalgamation.

Ref:

- Environment Clearance accorded vide No. F.No. J-11011/20/2017- IA-II(I) dtd. 12/04/2018.
- Previous Consent to 1st Operate (Part-I) for expansion & amalgamation accorded by the Board vide No. Format 1.0/BO/CAC-Cell/UAN No.000048838/3rd CAC-1808000653 dtd 16.08.2018.
- Previous Consent to Operate renewal accorded by the Board vide No. Format 1.0/ CAC/ UAN No. 0000092277/ CO-2011000999 dtd. 17/11/2020.
- Minutes of Consent Appraisal Committee meeting held on 04 & 06.05.2021.

Your application No.MPCB-CONSENT-0000104447 Dated 17.12.2020

For: grant of Consent to Operate under Section 26 of the Water (Prevention & Control of Pollution) Act, 1974 & under Section 21 of the Air (Prevention & Control of Pollution) Act, 1981 and Authorization under Rule 6 of the Hazardous & Other Wastes (Management & Transboundary Movement) Rules 2016 is considered and the consent is hereby granted subject to the following terms and conditions and as detailed in the schedule I, II, III & IV annexed to this order:

- The consent to operate is granted for a period up to 31/08/2023
- The capital investment of the project is Rs.108.13 Crs. (As per C.A Certificate submitted by industry)
- Consent is valid for the manufacture of:

Sr No	Product	Existing Quantity	Proposed Quantity	Total	иом
Proc	ducts				
1	2-(4-Morpholinyl)-8-Phenyl-[4H-1] - benzopyran-4-one	8.4	0	8.4	Kg/M
2	Cyclopropyl Methyl Bromide (CMB) OR CPMB	50	0	50	Kg/M
3	3'-Amino-5' OH Thymidine (Amino - T)	0.5	0	0.5	Kg/M

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02/00

Page 1 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	иом
4	Substituted Triazine Derivative / CG 29-1127 / 4-[4,6-bis(2,4-dimethyl phenyl) -1,3,5-triazine-2yl]-1,3 Benzenediol	68671.3	0	68671.3	Kg/M
5	Norcamphor	6.6	0	6.6	Kg/M
6	4-Pentenoic Acid	20	0	20	Kg/M
7	3-3 Dimethyl Cyclohexanone (DMCH)	50	0	50	Kg/M
8	2-6 Diamino-9-(?-D-Ribo) Purine (DAP)	5	0	5	Kg/M
9	N-Bz-DMTMOE C OR (N-Benzoyl-(4,4'- dimethyoxytrityl)(methoxy ethyl)-cytidine) (PNS)	15.8	0	15.8	Kg/M
10	2'-MOE Cytidine	0.85	0	0.85	Kg/M
11	2'-MOE N-Benzoyl Cytidine (Diol)	0.85	0	0.85	Kg/M
12	5'-ODMT-2'-MOE N-Benzoyl Cytidine-3'- OCEPA (Amidite)	15.8	0	15.8	Kg/M
13	N-Benzoyl - 3 - Tritylamino 5 Phosphoramidite 2 - deoxy Adenosine (dA)	0.5	0	0.5	Kg/M
14	3 - Tritylamino 5 - Phosphoramidite N-Bz-Dc	0.5	0	0.5	Kg/M
15	N - Isobutyryl - 3- Tritylamino 5 - Phosphoramidite 2 - deoxy Guanosine (dG)	0.5	0	0.5	Kg/M
16	3 - Tritylamino 5 - Phosphoramidite Thymidine (dT)	0.5	0	0.5	Kg/M
17	4-Methyl -2-Thiomethyl Pyrimidine	40	0	40	Kg/M
18	4-HEXYL RESORCINOL	2000	0	2000	Kg/M
19	N2 Phenyl Acetyl Guanosine OR N-iPAC dG OR dG(iPAC)	4	0	4	Kg/M
20	p-Nitro Phenyl Phosphate – Disodium Salt Hexahydrate OR PNPP DiNa	200	0	200	Kg/M
21	p-Nitro Phenyl Phosphate – Ditris Salt OR PNPP Ditris	10	0	10	Kg/N
22	5'-ODMT-2'MOE-T OR [5'-0 (4,4'-DIMETHOXY TRITYL) - 2'-0-(2-METHOXYETHYL) - THYMIDINE] (PNS)	23.75	76.25	100	Kg/M
23	2'-MOE Thymidine (Diol)	2.5	0	2.5	Kg/N
24	5'-ODMT-2'-MOE Thymidine-3'-OCEPA (Amidite)	23.75	0	23.75	Kg/N
25	N - BZ - 5' - ODMT - 2' - MOE - 5 - Me - C OR (5'-0 (4,4'-DIMETHOXY TRITYL)-2'-0-(2- METHOXYETHYL) N4 -BENZOYL-5- METHYLCYTIDINE) (PNS)	11.88	0	11.88	Kg/M
26	2'-MOE N-Benzoyl 5-Methyl Cytidine (Diol)	2.5	0	2.5	Kg/N
27	5'-ODMT-2'-MOE N-Benzoyl 5-Methyl Cytidine 3'- OCEPA (Amidite)	11.88	0	11.88	Kg/N
28	3'-ODMT-2'-MOE N-Benzoyl 5-Methyl Cytidine (Reverse PNS)	11.88	0	11.88	Kg/N

Increasewith Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS-PO6_F02/0

Page 2 of 24

Sr		Existing Quantity	Proposed Quantity	Total	UOM
29	3'-ODMT-2'-MOE N-Benzoyl 5-Methyl Cytidine 5'- OCEPA (Reverse Amidite)	11.88	0	11.88	Kg/N
30	2' - FU AMIDITE OR (5'-0-(4,4'-DIMETHOXY TRITYL)-2'-FLUORO URIDINE-3'-[(2- CYANOETHYL)-(N,N-DI ISOPROPYL)]- PHOSPHORAMIDITE)	0.5	0	0.5	Kg/N
31	5'-ODMT-2'-Fluoro Uridine (PNS)	0.5	0	0.5	Kg/N
32	5'-ODMT-N-Ac-2'-Fluoro Cytidine-3'-OCEPA (Amidite)	0.5	0	0.5	Kg/N
33	5'-ODMT-N-Ac-2'-Fluoro Cytidine (PNS)	0.5	0	0.5	Kg/N
34	5'-DMT-2'-OTBDMS-RNA PHOSPHORAMITE AND DERIVATIVES	5.23	0	5.23	Kg/N
35	3',5'-Triflate Adenosine	0.09	0	0.09	Kg/N
36	3',5'-Triflate 2'-OTBDMS-Adenosine	0.09	0	0.09	Kg/N
37	N6-Benzoyl Adenosine (N6-Bz-A)	0.09	0	0.09	Kg/N
38	3',5'-Triflate 2'-OTBDMS-N6-Benzoyl Adenosine	0.09	0	0.09	Kg/N
39	2'-OTBDMS-N6-Benzoyl Adenosine	0.09	0	0.09	Kg/N
40	5'-O-Dimethoxytrityl 2'-OTBDMS-N6-Benzoyl Adenosine (PNS)	5.3	0	5.3	Kg/N
41	5'-O-Dimethoxytrityl 2'-OTBDMS-N6-Benzoyl Adenosine 3'-CEPA (Amidite)	5.3	0	5.3	Kg/M
42	5'-O-Dimethoxytrityl 2'-OTBDMS-N6-Benzoyl Adenosine 3'-Succinate TEA salt	0.09	0	0.09	Kg/M
43	3',5'-Triflate Guanosine	0.09	0	0.09	Kg/M
44	N2-isobutyryl-Guanosine	0.09	0	0.09	Kg/M
45	3',5'-Triflate 2'-OTBDMS-N2-Isobutyryl Guanosine	0.09	0	0.09	Kg/M
46	2'-OTBDMS-N2-Isobutyryl Guanosine	0.09	0	0.09	Kg/M
47	5'-O-Dimethoxytrityl 2'-OTBDMS-N2-Isobutyryl Guanosine (PNS)	5.3	0	5.3	Kg/M
48	5'-O-Dimethoxytrityl 2'-OTBDMS-N2-Isobutyryl Guanosine 3'-CEPA (Amidite)	5.3	0	5.3	Kg/M
49	5'-O-Dimethoxytrityl 2'-OTBDM5-N2-Isobutyryl Guanosine 3'-Succinate TEA salt	0.09	0	0.09	Kg/M
50	N2-dmf-Guanosine	0.09	0	0.09	Kg/M
51	3',5'-Triflate 2'-OTBDMS-N2-dmf Guanosine	0.09	0	0.09	Kg/M
52	2'-OTBDMS-N2-dmf Guanosine	0.09	0	0.09	Kg/M
53	5'-O-Dimethoxytrityl 2'-OTBDMS-N- DMFGuanosine (PNS)	0.09	0	0.09	Kg/M
54	5'-O-DimethoxytrityI 2'-OTBDMS-N- DMFGuanosine 3'-CEPA (Amidite)	0.09	0	0.09	Kg/M
55	5'ODMT-2'OTBDMS-NAc-CYTIDINE	0.09	0	0.09	Kg/M

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS,PO6 F02/00

Page 3 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	UON
56	3'5'-(Di-t-butyl-silyl) 2'-OTBDMS Cytidine (Triflate 2'-OTBDMS-Cytidine)	0.09	0	0.09	Kg/N
57	Triflate 2'-OTBDMS-N4-Acetyl Cytidine	0.09	0	0.09	Kg/N
58	2'-OTBDMS-N4-Acetyl Cytidine	0.09	0	0.09	Kg/N
59	5'-O-Dimethoxytrityl-N4-Acetyl 2'-OTBDMSCytidine (PNS)	5.23	0	5.23	Kg/N
60	5'-O-Dimethoxytrityl-2'-OTBDMS-N4-Acetyl Cytidine 3'-CEPA (Amidite)	5.23	0	5.23	Kg/N
61	5'-O-Dimethoxytrityl-2'-OTBDMS-N-Ac-Cytidine 3'- O-succinate TEA salt	0.09	0	0.09	Kg/N
62	3'5'-Triflate Uridine	0.09	0	0.09	Kg/N
63	3'5'-Triflate 2'-OTBDMS-Uridine	0.09	0	0.09	Kg/N
64	2'-OTBDMS Uridine	0.09	0	0.09	Kg/N
65	5'-O-Dimethoxytrityl-Uridine	0.09	0	0.09	Kg/N
66	5'-O-Dimethoxytrityl-2'-OTBDMS Uridine (PNS)	5.23	0	5.23	Kg/N
67	5'-O-Dimethoxytrityl-2'-OTBDMS Uridine 3'- CEPA (Amidite)	5.23	0	5.23	Kg/I
68	5'-O-Dimethoxytrityl-2'-OTBDMS-Uridine 3'- OSuccinate TEA salt	0.09	0	0.09	Kg/I
69	5'ODMT-2'OTBDMS-N-Bz-Adenosine-3'-Isopropyl Phosphoramidite (Impurity)	0.09	0	0.09	Kg/I
70	5'ODMT-2'OTBDMS-NiBu-Guanosine-3'-Isopropyl Phosphoramidite (Impurity)	0.09	0	0.09	Kg/l
71	5'ODMT-2'OTBDMS-Ndmf-Guanosine-3'- Isopropyl Phosphoramidite (Impurity)	0.09	0	0.09	Kg/l
72	5'ODMT-2'OTBDMS-N-Ac-Cytidine-3'-Isopropyl Phosphoramidite (Impurity)	0.09	0	0.09	Kg/l
73	5'ODMT-2'OTBDMS-Uridine-3'-Isopropyl Phosphoramidite(Impurity)	0.09	0	0.09	Kg/l
74	SODIUM BETA GLYCERO PHOSPHATE	50	0	50	Kg/l
75	7-BROMO 1HEPTENE	200	300	500	Kg/l
76	2,2 BIS [-(2INDENYL)BIPHENYL]ZICRONIUM(IV) CHLORIDE	50	0	50	Kg/l
77	L-METHIONINE SULFOXIME	5	0	5	Kg/l
78	4,4'DIMETHOXYTRITYL CHLORIDE (DMT-CL)	1250	0	1250	Kg/l
79	1-CYANO CYCLOBUTANE-1,2-DICARBOXYLIC ACID DIMETHYL EASTER / TRANSDIACID	256	44	300	Kg/l
80	Trans 1,2-Cyclobutane Dicarboxylic acid	64	0	64	Kg/I
81	5'-DMT-C-ETHYL N-PROTECTED NUCLEOSIDE AND PHOSPHORAMIDITE	1.52	0	1.52	Kg/l
82	cEt N-Benzoyl Adenosine (Diol)	0.17	0	0.17	Kg/l
83	5'-ODMT cEt N-Benzoyl Adenosine (PNS)	1.52	0	1.52	Kg/
84	5'-ODMT cEt N-Benzoyl Adenosine-3'-OCEPA (Amidite)	1.52	0	1.52	Kg/l
85	cEt N-isobutryl Guanosine (Diol)	0.17	0	0.17	Kg/

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02/0

Page 4 of 2

Sr No	Product	Existing Quantity	Proposed Quantity	Total	UOM
86	5'-ODMT cEt N-isobutryl Guanosine (PNS)	1.52	0	1.52	Kg/M
87	5'-ODMT cEt N-isobutryl Guanosine-3'- OCEPA (Amidite)	1.52	0	1.52	Kg/M
88	cEt N-dmf Guanosine (Diol)	0.17	0	0.17	Kg/M
89	5'-ODMT cEt N-dmf Guanosine (PNS)	1.52	0	1.52	Kg/M
90	5'-ODMT cEt N-dmf Guanosine-3'-OCEPA (Amidite)	1.52	0	1.52	Kg/N
91	cEt N-Benzoyl Cytidine (Diol)	0.17	0	0.17	Kg/N
92	5'-ODMT cEt N-Benzoyl Cytidine (PNS)	1.52	0	1.52	Kg/N
93	5'-ODMT cEt N-Benzoyl Cytidine-3'-OCEPA (Amidite)	1.52	0	1.52	Kg/N
94	cEt N-Benzoyl 5-Methyl Cytidine (Diol)	0.17	0	0.17	Kg/N
95	5'-ODMT cEt N-Benzoyl 5-Methyl Cytidine (PNS)	1.52	0	1.52	Kg/N
96	5'-ODMT cEt N-Benzoyl 5-Methyl Cytidine-3'- OCEPA (Amidite)	1.52	0	1.52	Kg/N
97	cEt N-Acetyl Cytidine (Diol)	0.17	0	0.17	Kg/N
98	5'-ODMT cEt N-Acetyl Cytidine (PNS)	1.52	0	1.52	Kg/N
99	5'-ODMT cEt N-Acetyl Cytidine-3'-OCEPA (Amidite)	1.52	0	1.52	Kg/N
100	cEt N-Acetyl 5-Methyl Cytidine (Diol)	0.17	0	0.17	Kg/N
101	5'-ODMT cEt N-Acetyl 5-Methyl Cytidine (PNS) 2'-TBDMS 5'-DMT protected L-rA(Bn) amidite	1.52	0	1.52	Kg/N
102	5'-ODMT cEt N-Acetyl-5-Methyl Cytidine-3'- OCEPA (Amidite)	1.52	0	1.52	Kg/N
103	cEt Uridine (Diol)	0.17	0	0.17	Kg/N
104	5'-ODMT cEt Uridine (PNS)	1.52	0	1.52	Kg/N
105	5'-ODMT cEt Uridine-3'-OCEPA (Amidite)	1.52	0	1.52	Kg/N
106	cEt Thymidine (Diol)	0.17	0	0.17	Kg/N
107	5'-ODMT cEt Thymidine (PNS)	1.52	0	1.52	Kg/N
108	5'-ODMT cEt Thymidine-3'-OCEPA (Amidite)	1.52	0	1.52	Kg/N
109	NAP SUGAR	37.5	62.5	100	Kg/N
110	Aldol Sugar	12.5	0	12.5	Kg/N
111	ENA -PROTECTED NUCLEOSIDE & PHOSPHORAMIDITE	0.11	0	0.11	Kg/N
112	ENA N-Bz Adenosine (Diol)	0.01	0	0.01	Kg/N
113	5'-ODMT ENA N-Bz Adenosine (PNS)	0.11	0	0.11	Kg/N
114	5'-ODMT ENA N-Bz Adenosine-3'-OCEPA (Amidite)	0.11	0	0.11	Kg/N

Innovassynth Technologies (India) Limited/CO/UAN No. MPC8-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QM5.PO6_F02/00

Page 5 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	иом
115	ENA N-iBu Guanosine (Diol)	0.01	0	0.01	Kg/M
116	5'-ODMT ENA N-iBu Guanosine (PNS)	0.11	0	0.11	Kg/M
117	5'-ODMT ENA N-iBu Guanosine-3'-OCEPA (Amidite)	0.11	0	0.11	Kg/M
118	ENA N-Bz Cytidine (Diol)	0.01	0	0.01	Kg/M
119	5'-ODMT ENA N-Bz Cytidine (PNS)	0.11	0	0.11	Kg/M
120	5'-ODMT ENA N-Bz Cytidine-3'-OCEPA (Amidite)	0.11	0	0.11	Kg/M
121	ENA Thymidine (Diol)	0.01	0	0.01	Kg/M
122	5'-ODMT ENA Thymidine (PNS)	0.11	0	0.11	Kg/M
123	5'-ODMT ENA Thymidine-3'-OCEPA (Amidite)	0.11	0	0.11	Kg/M
124	E-TETRACETATE	50	0	50	Kg/M
125	TAC PROTECTED NECLEOSIDE & PHOSPHORAMIDITE	2.5	0	2.5	Kg/M
126	N-Tac deoxy Cytidine (Diol)	0.28	0	0.28	Kg/M
127	5'-ODMT N-Tac deoxy Cytidine (PNS)	2.5	0	2.5	Kg/M
128	5'-ODMT N-Tac deoxy Cytidine 3'-CEPA (Amidite)	2.5	0	2.5	Kg/M
129	N-Tac deoxy Adenosine (Diol)	0.28	0	0.28	Kg/M
130	5'-ODMT N-Tac deoxy Adenosine (PNS)	2.5	0	2.5	Kg/M
131	5'-ODMT N-Tac deoxy Adenosine 3'-CEPA (Amidite)	2.5	0	2.5	Kg/M
132	N-Tac deoxy Guanosine (Diol)	0.28	0	0.28	Kg/M
133	5'-ODMT N-Tac deoxy Guanosine (PNS)	2.5	0	2.5	Kg/M
134	5'-ODMT N-Tac deoxy Guanosine 3'-CEPA (Amidite)	2.5	0	2.5	Kg/M
135	2'-OTBDMS N-Tac Cytidine (Diol)	0.28	0	0.28	Kg/M
136	5'-ODMT 2'-OTBDMS N-Tac Cytidine (PNS)	2.5	0	2.5	Kg/N
137	5'-ODMT 2'-OTBDMS N-Tac Cytidine 3'-CEPA (Amidite)	2.5	0	2.5	Kg/N
138	2'-OTBDMS N-Tac Adenosine (Diol)	0.28	0	0.28	Kg/N
139	5'-ODMT 2'-OTBDMS N-Tac Adenosine (PNS)	2.5	0	2.5	Kg/N
140	5'-ODMT 2'-OTBDMS N-Tac Adenosine 3'- CEPA (Amidite)	2.5	0	2.5	Kg/N
141	2'-OTBDMS N-Tac Guanosine (Diol)	0.28	0	0.28	Kg/N
142	5'-ODMT 2'-OTBDMS N-Tac Guanosine (PNS)	2.5	0	2.5	Kg/N
143	5'-ODMT 2'-OTBDMS N-Tac Guanosine 3'- CEPA (Amidite)	2.5	0	2.5	Kg/N
144	2'-OMe N-Tac Cytidine (Diol)	0.28	0	0.28	Kg/N
_	5'-ODMT 2'-OMe N-Tac Cytidine (PNS)	2.5	0	2.5	Kg/N

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.P06_F02/

Page 6 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	UOM
146	5'-ODMT 2'-OMe N-Tac Cytidine 3'-CEPA (Amidite)	2.5	0	2.5	Kg/M
147	2'-OMe N-Tac Adenosine (Diol)	0.28	0	0.28	Kg/N
148	5'-ODMT 2'-OMe N-Tac Adenosine (PNS)	2.5	0	2.5	Kg/N
149	5'-ODMT 2'-OMe N-Tac Adenosine 3'-CEPA (Amidite)	2.5	0	2.5	Kg/N
150	2'-OMe N-Tac Guanosine (Diol)	0.28	0	0.28	Kg/M
151	5'-ODMT 2'-OMe N-Tac Guanosine (PNS)	2.5	0	2.5	Kg/N
152	5'-ODMT 2'-OMe N-Tac Guanosine 3'-CEPA (Amidite	2.5	0	2.5	Kg/N
153	5'-DMT-2'-MOE PROTECTED NUCLEOSIDE & PHOSPHORAMIDITE	10.55	289.45	300	Kg/N
154	2'-MOE N-Benzoyl Adenosine (Diol)	1.25	0	1.25	Kg/N
155	5'-ODMT-2'-MOE N-Benzoyl Adenosine (PNS)	10.55	0	10.55	Kg/M
156	5'-ODMT-2'-MOE N-Benzoyl Adenosine-3'- OCEPA (Amidite)	10.55	0	10.55	Kg/M
157	2'-MOE N-Isobutryl Guanosine (Diol)	1.25	0	1.25	Kg/N
158	5'-ODMT-2'-MOE N-Isobutryl Guanosine (PNS)	10.55	0	10.55	Kg/N
159	5'-ODMT-2'-MOE N-Isobutryl Guanosine-3'- OCEPA (Amidite)	10.56	0	10.56	Kg/M
160	2'-MOE N-dmf Guanosine (Diol)	1.25	0	1.25	Kg/M
161	5'-ODMT-2'-MOE N-dmf Guanosine (PNS)	10.56	0	10.56	Kg/N
162	5'-ODMT-2'-MOE N-dmf Guanosine-3'-OCEPA (Amidite)	10.56	0	10.56	Kg/N
163	2'-MOE Uridine (Diol)	1.25	0	1.25	Kg/N
164	5'-ODMT-2'-MOE Uridine (PNS)	10.56	0	10.56	Kg/N
165	5'-ODMT-2'-MOE Uridine-3'-OCEPA (Amidite)	10.56	0	10.56	Kg/M
166	5'-DMT-2'-O-METHYL PROTECTED NUCLEOSIDE & PHOSPHORAMIDITIES	3.17	96.83	100	Kg/M
167	2'-OMe N-Benzoyl Adenosine (Diol)	0.14	0	0.14	Kg/M
168	5'-ODMT-2'-OMe N-Benzoyl Adenosine (PNS)	3.17	0	3.17	Kg/M
169	5'-ODMT-2'-OMe N-Benzoyl Adenosine-3'- OCEPA (Amidite)	3.17	0	3.17	Kg/M
170	2'-OMe N-isobutryl Guanosine (Diol)	0.14	0	0.14	Kg/M
171	5'-ODMT-2'-OMe N-isobutryl Guanosine (PNS)	3.17	0	3.17	Kg/M
172	5'-ODMT-2'-OMe N-isobutryl Guanosine-3'- OCEPA (Amidite)	3.17	0	3.17	Kg/M
173	2'-OMe N-dmf Guanosine (Diol)	0.14	0	0.14	Kg/M
174	5'-ODMT-2'-OMe N-dmf Guanosine (PNS)	3.17	0	3.17	Kg/M

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02/00

Page 7 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	UOM
175	5'-ODMT-2'-OMe N-dmf Guanosine-3'-OCEPA (Amidite)	3.17	0	3.17	Kg/N
176	2'-OMe N-Benzoyl Cytidine (Diol)	0.14	0	0.14	Kg/N
177	5'-ODMT-2'-OMe N-Benzoyl Cytidine (PNS)	3.17	0	3.17	Kg/N
178	5'-ODMT-2'-OMe N-Benzoyl Cytidine-3'-OCEPA (Amidite)	3.17	0	3.17	Kg/N
179	2'-OMe N-Acetyl Cytidine (Diol)	0.14	0	0.14	Kg/N
180	5'-ODMT-2'-OMe N-Acetyl Cytidine (PNS)	3.17	0	3.17	Kg/N
181	5'-ODMT-2'-OMe N-Acetyl Cytidine-3'-OCEPA (Amidite)	3.17	0	3.17	Kg/N
182	5'-ODMT-2'-OMe Thymidine (PNS)	3.17	0	3.17	Kg/N
183	5'-ODMT-2'-OMe Thymidine-3'-OCEPA (Amidite)	3.17	, 0	3.17	Kg/N
184	5'-ODMT-2'-OMe Uridine (PNS)	3.17	0	3.17	Kg/N
185	5'-ODMT-2'-OMe Uridine-3'-OCEPA (Amidite)	3.17	0	3.17	Kg/N
186	2'-OMe-2,6-Diaminopurine Riboside or 2'-OMe DAPR	0.14	0	0.14	Kg/N
187	3'-ODMT-2'-OMe N-Benzoyl Adenosine (Reverse PNS)	0.14	0	0.14	Kg/N
188	3'-ODMT-2'-OMe N-Benzoyl Adenosine-5'- OCEPA (Reverse Amidite)	0.14	0	0.14	Kg/N
189	3'-ODMT-2'-OMe N-isobutryl Guanosine (Reverse PNS)	0.14	0	0.14	Kg/N
190	3'-ODMT-2'-OMe N-isobutryl Guanosine-5'- OCEPA (Reverse Amidite)	0.14	0	0.14	Kg/N
191	3'-ODMT-2'-OMe N-Benzoyl Cytidine (Reverse PNS)	0.14	0	0.14	Kg/N
192	3'-ODMT-2'-OMe N-Benzoyl Cytidine-5'-OCEPA (Reverse Amidite)	0.14	0	0.14	Kg/N
193	3'-ODMT-2'-OMe N-Acetyl Cytidine (Reverse PNS)	0.14	0	0.14	Kg/N
194	3'-ODMT-2'-OMe N-Acetyl Cytidine-5'-OCEPA (Reverse Amidite)	0.14	0	0.14	Kg/N
195	3'-ODMT-2'-OMe Thymidine (Reverse PNS)	0.14	0	0.14	Kg/N
196	3'-ODMT-2'-OMe Thymidine-5'-OCEPA (Reverse Amidite	0.14	0	0.14	Kg/N
197	3'-ODMT-2'-OMe Uridine (Reverse PNS)	0.14	0	0.14	Kg/N
198	3'-ODMT-2'-OMe Uridine-5'-OCEPA (Reverse Amidite)	0.14	0	0.14	Kg/l
199	ALLOFURANOSE SUGAR	10	0	10	Kg/N
200	TINUVIN -400	500	63000	63500	Kg/N
201	- Control of the Cont	500	0	500	Kg/N
202		15000	10000	25000	Kg/I

negyassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PD6_F02/0

Page 8 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	UON
203	5'-ODMT-DEOXYNUCLEOSIDES, PHOSPHORAMIDITES AND SUCCINATE SALTS	10	0	10	Kg/N
204	N-Benzoyl deoxy Adenosine (Diol)	0.27	0	0.27	Kg/N
205	5'-ODMT N-Benzoyl deoxy Adenosine (PNS)	10	0	10	Kg/N
206	5'-ODMT N-Benzoyl deoxy Adenosine-3'-OCEPA (Amidite)	10	0	10	Kg/N
207	5'-ODMT N-Benzoyl deoxy Adenosine-3'-O- Succinate TEA Salt	0.27	0	0.27	Kg/N
208	N-isobutryl deoxy Guanosine (Diol)	0.27	0	0.27	Kg/N
209	5'-ODMT N-isobutryl deoxy Guanosine (PNS)	10	0	10	Kg/N
210	5'-ODMT N-isobutryl deoxy Guanosine-3'-OCEPA (Amidite)	10	0	10	Kg/N
211	5'-ODMT N-isobutryl deoxy Guanosine-3'-O- Succinate TEA Salt	0.27	0	0.27	Kg/N
212	N-dmf deoxy Guanosine (Diol)	0.27	0	0.27	Kg/N
213	5'-ODMT N-dmf deoxy Guanosine (PNS)	10	0	10	Kg/N
214	5'-ODMT N-dmf deoxy Guanosine-3'-OCEPA (Amidite)	10	0	10	Kg/N
215	5'-ODMT N-dmf deoxy Guanosine-3'-O- Succinate TEA Salt	0.27	0	0.27	Kg/N
216	N-Benzoyl deoxy Cytidine (Diol)	0.27	0	0.27	Kg/N
217	5'-ODMT N-Benzoyl deoxy Cytidine (PNS)	10	0	10	Kg/M
218	5'-ODMT N-Benzoyl deoxy Cytidine-3'-OCEPA (Amidite)	10	0	10	Kg/M
219	5'-ODMT N-Benzoyl deoxy Cytidine-3'-O- Succinate TEA Salt	0.27	0	0.27	Kg/M
220	N-Acetyl deoxy Cytidine (Diol)	0.27	0	0.27	Kg/M
221	5'-ODMT N-Acetyl deoxy Cytidine (PNS)	10	0	10	Kg/M
222	5'-ODMT N-Acetyl deoxy Cytidine-3'-OCEPA (Amidite)	10	0	10	Kg/M
223	N-Benzoyl 5-Methyl deoxy Cytidine (Diol)	0.27	0	0.27	Kg/M
224	5'-ODMTN-Benzoyl 5-Methyl deoxy Cytidine (PNS)	10	0	10	Kg/M
225	5'-ODMT N-Benzoyl 5-Methyl deoxy Cytidine-3'- OCEPA (Amidite)	10	0	10	Kg/M
226	5'-ODMT N-Benzoyl 5-Methyl deoxy Cytidine-3'- OSuccinate TEA Salt	0.27	0	0.27	Kg/M
227	N-Acetyl 5-Methyl deoxy Cytidine (Diol)	0.27	0	0.27	Kg/M
228	5'-ODMT N-Acetyl 5-Methyl deoxy Cytidine (PNS)	10	0	10	Kg/M
29	5'-ODMT N-Acetyl-5-Methyl deoxy Cytidine-3'- OCEPA (Amidite)	10	0	10	Kg/M
	5'-ODMT N-Acetyl-5-Methyl deoxy Cytidine-3'-O- Succinate TEA Salt	0.27	0	0.27	Kg/M

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02/00

Page 9 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	иом
231	5'-ODMT deoxy Uridine (PNS)	10	0	10	Kg/M
232	5'-ODMT deoxy Uridine-3'-OCEPA (Amidite)	10	0	10	Kg/M
233	5'-ODMT deoxy Uridine-3'-O-Succinate TEA Salt	0.27	0	0.27	Kg/M
234	5'-ODMT deoxy Thymidine (PNS)	10	0	10	Kg/M
235	5'-ODMT deoxy Thymidine-3'-OCEPA (Amidite)	10	0	10	Kg/M
236	5'-ODMT deoxy Thymidine-3'-O-Succinate TEA Salt	0.27	0	0.27	Kg/M
237	deoxy Cytidine Monophosphate	0.27	0	0.27	Kg/M
238	3'-ODMT N-Benzoyl deoxy Adenosine (Reverse PNS)	0.27	0	0.27	Kg/M
239	3'-ODMT N-Benzoyl deoxy Adenosine-5'- OCEPA (Reverse Amidite)	0.27	0	0.27	Kg/M
240	3'-ODMT N-isobutryl deoxy Guanosine (Reverse PNS)	0.27	0	0.27	Kg/M
241	3'-ODMT N-isobutryl deoxy Guanosine-5'- OCEPA (Reverse Amidite)	0.27	0	0.27	Kg/M
242	3'-ODMT N-Benzoyl deoxy Cytidine (Reverse PNS)	0.27	0	0.27	Kg/M
243	3'-ODMT N-Benzoyl deoxy Cytidine-5'-OCEPA (Reverse Amidite)	0.27	0	0.27	Kg/M
244	3'-ODMTN-Benzoyl 5-Methyl deoxy Cytidine (Reverse PNS)	0.27	0	0.27	Kg/M
245	3'-ODMT N-Benzoyl 5-Methyl deoxy Cytidine-5'-OCEPA (Reverse Amidite)	0.27	0	0.27	Kg/M
246	3'-ODMT N-Acetyl 5-Methyl deoxy Cytidine (Reverse PNS)	0.27	0	0.27	Kg/M
247	3'-ODMT N-Acetyl-5-Methyl deoxy Cytidine-5'-OCEPA (Reverse Amidite)	0.27	0	0.27	Kg/M
248	3'-ODMT deoxy Uridine (Reverse PNS)	0.27	0	0.27	Kg/M
249	3'-ODMT deoxy Uridine-5'-OCEPA (Reverse Amidite)	0.27	0	0.27	Kg/M
250	3'-ODMT deoxy Thymidine (Reverse PNS)	0.27	0	0.27	Kg/M
251	3'-ODMT deoxy Thymidine-5'-OCEPA (Reverse Amidite)	0.27	0	0.27	Kg/M
252	5'-ODMT N-Acetyl deoxy Cytidine (PNS) (Pharma Grade)	0.27	0	0.27	Kg/M
253	5'-ODMT N-isobutryl deoxy Guanosine (PNS) (Pharma Grade)	0.27	0	0.27	Kg/M
254	5'-ODMT deoxy Thymidine (PNS) (Pharma Grade)	0.27	0	0.27	Kg/M
255	3'-O-Phthalimido-thymidine (dT)	0.27	0	0.27	Kg/M

Innovasaynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-9000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02/0

Page 10 of 24

Sr No	Dromuce	Existing Quantity	Proposed Quantity	Tota	UOM
256	3'-O-Phthalimido-2'-Deoxy Cytidine	0.27	0	0.27	Kg/M
257	3'-O-Phthalimido-2'-Deoxy Adenosine	0.27	0	0.27	Kg/M
258	3'-O-Phthalimido-2'-Deoxy Guanosine	0.27	0	0.27	Kg/M
259	DMT-LNA-NUCLEOSIDES & PHOSPHORAMIDITES	7.31	0	7.31	Kg/M
260	LNA N-Benzoyl Adenosine (Diol)	0.25	0	0.25	Kg/M
261	5'-ODMT LNA N-Benzoyl Adenosine (PNS)	7.31	0	7.31	Kg/M
262	5'-ODMT LNA N-Benzoyl Adenosine-3'-O- CEPA (Amidite)	7.31	0	7.31	Kg/M
263	5'-ODMT LNA N-Benzoyl Adenosine-3'-O- Succinate TEA salt	0.25	0	0.25	Kg/M
264	LNA N-DMF Guanosine (Diol)	0.25	0	0.25	Kg/M
265	5'-ODMT LNA N-DMF Guanosine (PNS)	7.31	0	7.31	Kg/M
266	5'-ODMT LNA N-DMF Guanosine-3'-O-CEPA (Amidite)	7.31	0	7.31	Kg/M
267	5'-ODMT LNA N-DMF Guanosine-3'-O- Succinate TEA salt	0.25	0	0.25	Kg/M
268	LNA N-Benzoyl 5-Methyl Cytidine (Diol)	0.25	0	0.25	Kg/M
269	5'-ODMT LNA N-Benzoyl 5-Methyl Cytidine (PNS)	7.31	0	7.31	Kg/M
270	5'-ODMT LNA N-Benzoyl 5-Methyl Cytidine-3'-O-CEPA (Amidite)	7.31	0	7.31	Kg/M
271	5'-ODMT LNA N-Benzoyl 5-Methyl Cytidine-3'-OSuccinate TEA salt	0.25	0	0.25	Kg/M
272	LNA Thymidine (Diol)	0.25	0	0.25	Kg/M
273	5'-ODMT LNA Thymidine (PNS)	7.31	0	7.31	Kg/M
274	5'-ODMT LNA Thymidine-3'-O-CEPA (Amidite)	7.31	0	7.31	Kg/M
275	5'-ODMT LNA Thymidine-3'-O-Succinate TEA salt	0.25	0	0.25	Kg/M
276	LNA Uridine (Diol)	0.25	0	0.25	Kg/M
277	5'-ODMT LNA Uridine (PNS)	7.31	0	-	Kg/M
_	5'-ODMT LNA Uridine-3'-O-CEPA (Amidite)	7.31	0	7.31	Kg/M
79	5'-ODMT LNA Uridine-3'-O-Succinate TEA salt	0.25	0	0.25	Kg/M
_	LNA N-Benzoyl Cytidine (Diol)	0.25	0	0.25	Kg/M
_	5'-ODMT LNA N-Benzoyl Cytidine (PNS)	7.31	0	7.31	Kg/M
82	5'-ODMT LNA N-Benzoyl Cytidine-3'-O-CEPA (Amidite)	7.31	0	7.31	Kg/M
	5'-ODMT LNA N-Benzoyl Cytidine-3'-O- Succinate TEA salt	0.25	0	0.25	Kg/M
84	3'-ODMT LNA N-Benzoyl Adenosine (Reverse PNS)	0.25	0	0.25	Kg/M

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-96-2021 10:44:02 am) /QMS.PO6_F02/0

Page 11 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	иом
285	3'-ODMT LNA N-Benzoyl Adenosine-5'-O-CEPA (Reverse Amidite)	0.25	0	0.25	Kg/M
286	3'-ODMT LNA N-DMF Guanosine (Reverse PNS)	0.25	0	0.25	Kg/M
287	3'-ODMT LNA N-DMF Guanosine-5'-O-CEPA (Reverse Amidite)	0.25	0	0.25	Kg/M
288	3'-ODMT LNA N-Benzoyl 5-Methyl Cytidine (Reverse PNS)	0.25	0	0.25	Kg/M
289	3'-ODMT LNA N-Benzoyl 5-Methyl Cytidine-5'- O-CEPA (Reverse Amidite)	0.25	0	0.25	Kg/M
290	3'-ODMT LNA Thymidine (Reverse PNS)	0.25	0	0.25	Kg/N
291	3'-ODMT LNA Thymidine-5'-O-CEPA (Reverse Amidite)	0.25	0	0.25	Kg/M
292	GALNAC ACYCLIC SUCCINATE	0.47	0	0.47	Kg/M
293	TriGalNAc CBz	0.47	0 -	0.47	Kg/N
294	GalNAc Hydroxy Proline Succinate	0.47	0	0.47	Kg/N
295	THA(PA-DAP)3-CBz	0.47	0	0.47	Kg/M
296	(GaINAC-2'-O-PA-DAP)3 THA. TFA Salt)	0.47	0	0.47	Kg/N
297	5-ODMTr-3-OTBS-N-Oxododecanoic Acid.TEA Salt	0.47	0	0.47	Kg/N
298	NOOTKATONE	466.7	0	466.7	Kg/N
299	4-AMINOBENZONITRILE	166	0	166	Kg/M
300	Diethyl L-(+) tartrate	46	0	46	Kg/N
301	DL -LACTIDE	8.3	0	8.3	Kg/N
302	DIETHYLAMINO MALONATE HCI	250	0	250	Kg/N
303	ACRYLAMIDE PURIFIED	500	300	800	Kg/N
304	ETHYLENEDIAMINETETRAACETIC ACID METAL CHELATE SALTS	0.5	0	0.5	Kg/N
305	SODIUM SELENITE PENTAHYDRATE	0.5	0	0.5	Kg/N
306	2,4Dihydroxy Benzophenone	1	0	1	Kg/N
307	Peonile	1	0	1	Kg/N
308	R&D Products (intermediate chemicals)	63.34	336.66	400	Kg/N
309	TC U Amidite	63.34	0	63.34	Kg/N
310	2-Isopentyl-2-Isopropyl-1,3-Dimethoxy propane (R5)	63.34	0	63.34	Kg/N
311	4-Butyl Resorcinol	63.34	0	63.34	-
312	3G Metallocene	63.34	0	63.34	1
313	4-Hydroxy Cinnamic acid	3.33	0	3.33	Kg/I
314	6-Amino Hexanol	63.34	0	63.34	-
315	1,2-Bis(3-indenyl)ethane (EBI)	3.33	0	3.33	-
316	3-Methyl cyclopent-2-en-1-one (3MCO)	3.33	0	3.33	Kg/N

Improvessynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PD6_F02/0

Page 12 of 24

Sr No	Product		Proposed Quantity	Total	UON
317	4-Methyoxy Trityl Chloride	3.33	0	3.33	Kg/N
318	2-Cyanoethyl-N,N,N',N'- tetraisopropylphosphorodiamidite (Phos Reagent)	3.33	0	3.33	Kg/N
319	Sec Butyl Cyclopentadiene Lithium	3.33	0	3.33	Kg/N
320	4,5-Dichloro pthalic acid	0.3	0	0.3	Kg/N
321	4-Tert-butylphenoxy Acetic Acid	40	810	850	Kg/N
322	6-Bromo-Iso-indolin-1-one	8.3	0	8.3	Kg/N
323	Trans aconiticAcid	8.3	0	8.3	Kg/f
324	2,2 BIS [-(2INDENYL)BIPHENYL]ZICRONIUM(IV) CHLORIDE ON SILICA SUPPORT	100	2300	2400	Kg/N
325	N,N-Dimethylbenzamide (DMBA)	1000	0	1000	Kg/N
326	4-(methylamino)pentan-2-ol dibenzoate (AB)	1000	0	1000	Kg/N
327	9,9-bis(methoxymethyl)fluorene (FLU)	1000	0	1000	Kg/I
328	2-AminoBenzonitrile	380	0	380	Kg/I
329	GAFL-158	250	0	250	Kg/I
330	3,5-Bis(2-Cyanoprop-2-yl)benzyl bromide Anastrazole intermediat	0.3	0	0.3	Kg/f
331	3,5-Bis(2-Cyanoprop-2-yl)Toluene Anastrazole intermediate	0.3	0	0.3	Kg/l
332	2,2'-Azobis(2- methylpropionamidine)dihydrochloride	5	0	5	Kg/f
333	CMPT SA THE SAN THE SA	40	0	40	Kg/f
334	CMIMT	10	0	10	Kg/I
335	MTSCNE	10	0	10	Kg/l
336	ONT-7-D & ONT-7-L	10	0	10	Kg/f
337	UNA Phosphoramidites & Derivatives	0.39	0	0.39	Kg/l
338	UNA-U-Amidite	0.39	0	0.39	Kg/f
339	5'ODMT-2',3' Seco- 2'OBz-Uridine	0.39	0	0.39	Kg/l
340	UNA-C-Amidite	0.39	0	0.39	Kg/f
341	5'ODMT-N-Ac -2',3' Seco -2'OBz -Cytidine	0.39	0	0.39	Kg/l
342	UNA-ABz-Amidite	0.39	0	0.39	Kg/N
343	5'ODMT- N-Bz -2',3' Seco-2'OBzAdenosine	0.39	0	0.39	Kg/l
344	UNA-Gibu Amidite	0.39	0	0.39	Kg/f
345	5'ODMT- N-iBu -2',3' Seco-2'OBz- Guanosine	0.39	0	0.39	Kg/N
346	UNA Seco cytidine	0.39	0	0.39	Kg/N
347	UNA Seco Adenosine	0.39	0	0.39	Kg/N
348	UNA Seco Guanosine	0.39	0	0.39	Kg/N
349	UNA-U-Monophosphate	0.39	0	0.39	Kg/N
350	Morpholino Phosphoramidites & Derivatives	1	0	1	Kg/N
351	Morpholino – A Subunit OR (N-trityl morpholino-N-Bz Adenine dimethylamido phosphoramidic chloride)	1	0	1	Kg/N

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02/0

Page 13 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	иом
352	Morpholino – G Subunit OR (N-trityl morpholino-N-iBu Guanine dimethylamido phosphoramidic chloride)	1	0	1	Kg/M
353	Morpholino – U Subunit OR (N-trityl morpholino- Uracil dimethylamido phosphoramidic chloride)	1	0	1	Kg/M
354	Morpholino - C Subunit OR (N-trityl morpholino- N-Bz Cytosine dimethylamido phosphoramidic chloride)	1	0	1	Kg/M
355	Chiral Phosphoramidites & Derivatives	1	0	1	Kg/M
356	5'-ODMT-2' OMe NiBu-Guanosine O6 CE	5	0	5	Kg/M
357	Bis TAc dG	10	0	10	Kg/M
358	5'-ODMT-NiBu-deoxycytidine	5	0	5	Kg/M
359	5'-Biotin Phosphoramidite	0.2	0	0.2	Kg/M
360	5-lodo dC	0.8	0	0.8	Kg/M
361	2'-Fluoro-GiBu-3'-CEPA OR (5'-ODMT-2'-Fluoro- GiBu-3'- CEPA (Amidite))	0.4	0	0.4	Kg/M
362	5'-ODMT-2'-Fluoro-GiBu (PNS)	0.4	0	0.4	Kg/M
363	5'-ODMT-N6-Bz-2'-Fluoro Adenosine-3'-OCEPA (Amidite)	0.4	0	0,4	Kg/M
364	5'-ODMT-N6-Bz-2'-Fluoro Adenosine (PNS)	0.4	0	0.4	Kg/N
365	5'ODMT-NiBu-dG (O6 CE)	5	0	5	Kg/N
366	Ethyl -2,2 -difuropropionate	41.6	0	41.6	Kg/N
367	Jalshakti	1	0	1	Kg/N
368	(1-Hydroxy-3-methylbutylidene)-5,5-dimethyl -1,3- cyclohexanedione (ivDde-OH)	70	0	70	Kg/N
369	Propargyl methacrylate	1	0	1	Kg/N
370	NPNPN / CRD6 ligand	4	0	4	Kg/N
371	2-IsopropyI-1H-Indene	1	0	1	Kg/N
372	Diboronic Acid	1	0	1	Kg/N
373	Uracil	41	0	41	Kg/N
374	Phosphorous Oxychloride (Rec)	1	0	1	Kg/N
375	(R)-1-[(4-Chlorophenyl)phenylmethyl]pipe	1	0	1	Kg/N
376	Lutencryl 250	2700	0	2700	Kg/N
377	5-Methyl-1,3-Benzenediacetonitrile	1	0	1	Kg/N
378		11	0	11	Kg/N
379	Phenyl-(2-pyridyl) acetamide (PPA)	793.33	0	793.33	Kg/N
380	4-Chloro-4'-hydroxybenzophenone or CHBP or 4-CHBP	7208.6	0	7208.6	Kg/N
381	Dimethyl-2,2-Diisobutylmalonate	1	0	1	Kg/N
382	GalNAc-2-O-pentanoic Acid OR GalNAc Acetoxy Pentanoic acid	5.5	0	5.5	Kg/N
303	GalNAc Benzyloxy Pentanoic acid	5.5	0	5.5	Kg/N

Innovassynth Technologies (India) Limited/CO/UAN No. MPC8-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02

Page 14 of 24

Sr No	Product	Existing Quantity	Proposed Quantity	Total	UOM
384	Santalol	1667	0	1667	Kg/M
385	Non-hazardous synthetic compounds for research analysis and data OR (Bis Benzyl Ribo Sugar)	30	0	30	Kg/M
386	L-RA AMIDITE OR 2'-TBDMS 5'-DMT protected L-rA(Bn) amidite	2	0	2	Kg/M
387	Para chloro Meta Xylenol (PCMX)	150	0	150	Kg/M
388	4-(2-Chloroethyl) Morpholine Hydrochloride (CEM HCI)	1700	0	1700	Kg/M
389	Biocide 950	760	0	760	Kg/M
390	2-Methyl-4-isothiazolin-3-one (MIT)	40	0	40	Kg/M
391	Biocide 300	760	0	760	Kg/M
392	5-Chloro-2-Methyl-4-isothiazolin-3-one : 2-Methyl-4- isothiazolin-3-one (CMIT/MIT) (3:1)	40	0	40	Kg/M
393	1-[2-Amino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol (Venlafaxine Step 2 Free Base)	200	0	200	Kg/M
394	[RS]-1-[2-Dimethylamino-1-(4-methoxyphenyl)- ethyl]cyclohexanol (Venlafaxine Base)	1000	0	1000	Kg/M
395	1-[2-Amino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol- hcl (Venlafaxine Stage 2 HCl)	100	0	100	Kg/M
396	N - Ethyl Caprolactam	200	0	200	Kg/M
	Trading of Chemical - 2 Chloroethanol	416.67		416.67	1
	Trading of Chemical - Methane Sulfonic Acid 70%	1666.67		1666.67	
	Trading of Chemical - Methane Sulfonic Acid 99%	5000		5000	
	Trading of Chemical - Acetaldehyde Oxime	833.32		833.32	
	Trading of Chemical - Tetra Hydrofuran	1666.67	İ	1666.67	1
	Trading of Chemical - Acetonitrile	1666.67		1666.67	1 1
	Trading of Chemical - Pyridine	1666.67		1666.67	1 1
47	Trading of Chemical - Boron TriChloride in MDC (1M Solution)	83.33		83.33	
397	Trading of Chemical - Phenylmagnesium chloride solution	250	0	250	Kg/M
	Trading of Chemical - Trimethylsilyl trifluoromethanesulfonate	833.32		833.32	
	Trading of Chemical - Isopropyl magnesium Chloride Lithium Chloride	250		250	
	Trading of Chemical - Triflic Anhydride	833.33	1	833.33	
	Trading of Chemical - 2-Chloro N, N- Disopropylethylamine hyd rochloride	166.67		166.67	
	Trading of Chemical - Tris Buffer	166.67	h	166.67	
	Trading of Other Chemicals	26166.67	2	6166.67	

Overall total Quantity of Products & its intermediates shall not exceed 1,90,666.69 Kg/Month and total quantity of Trading Chemicals shall not exceed 41,666.7 Kg/M.

4. Conditions under Water (P&CP), 1974 Act for discharge of effluent:

5r No	Description	Permitted (in CMD)	Standards to	Disposal Path
1.	Trade effluent	242.9	As per Schedule-I	Recycle 100% to achieve ZLD
2.	Domestic effluent	33	As per Schedule-I	On land for gardening

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:92 am) /QMS.PO6_F02/00

Page 15 of 24

5. Conditions under Air (P& CP) Act, 1981 for air emissions:

Sr No.	Stack No.	Description of stack / source	Number of Stack	Standards to be achieved
1	S-1	Boilers (2 x 10 TPH - 1 Standby) & Thermopack (2 Lac KCal/Hr)	1	As per Schedule -II
2	S-2 to S-5	D G Sets (500, 2 x 1000 & 1010 KVA)	00, 2 x 1000 & 4 As	
3	S-6	Process Vent (MPP)	1	As per Schedule -II
4	S-7	Process Vent (MPP)	1	As per Schedule -II
5	S-8	Process Vent (PP-1)	1	As per Schedule -II
6	S-9	Process Vent (PP-2)	1	As per Schedule -II
7	S-10	Process Vent (PP-3/4/5)	1	As per Schedule -II
8	S-11	Process Vent (PP-3/4/5)	1	As per Schedule -II
9	S-12 Process Vent (PP-3/4/5)		1	As per Schedule -II
10	S-13	Process Vent (PP-6)	1	As per Schedule -II
11	S-14	Process Vent (ETP)	1	As per Schedule -II

6. Non-Hazardous Wastes:

Sr No	Type of Waste	Quantity	UoM	Treatment	Disposal
1	Ash From Briquette Fired Boiler	9000	Kg/Day	NA	Sale to Brick Manufacturer/ Landfill
2	Empty Drums	1065	No/D	NA	Sale to Auth. Party/ Recycler

Conditions under Hazardous & Other Wastes (M & T M) Rules 2016 for treatment and disposal of hazardous waste:

Sr No	Category No./ Type	Quantity	UoM	Treatment	Disposal
1	20.3 Distillation residues	825.9	MT/A	Landfill/ Incineration	CHWTSDF
2	37.3 Concentration or evaporation residues (MEE Solids)	531.04	MT/A	Landfill after treatment/ Incineration	CHWTSDF
3	35.3 Chemical sludge from waste water treatment	297.51	MT/A	Landfill	CHWTSDF
4	5.1 Used or spent oil	2	MT/A	Recycle	Sale to authorised party / CHWTSDF
5	34.1 Chemical-containing residue arising from decontamination.	2.5	MT/A	Inhouse Treatment	Treated in own ETP
6	28.4 Off specification products	4	MT/A	Landfill/ Incineration	CHWTSDF

Page 16 of 24

Category No./ Type	Quantity	UoM	Treatment	Disposal
33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	70	MT/A	Recycle	Sale to authorised party / CHWTSDF
By-product Hydrochloric Acid 30%	100.39	MT/M	Recycle*	Sale to authorised party / CHWTSDF
By-product Sulphuric Acid 66%	120.32	MT/M	Recycle*	Sale to authorised party / CHWTSDF
By-product Mixed Solvent	233.54	MT/M	Recycle*	Sale to authorised party / CHWTSDF
By-product Aqueous AICI3 Solution	1038.68	MT/M	Recycle*	Sale to authorised party / CHWTSDF
	33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes By-product Hydrochloric Acid 30% By-product Sulphuric Acid 66% By-product Mixed Solvent By-product Aqueous AICI3	33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes By-product Hydrochloric Acid 30% By-product Sulphuric Acid 66% 120.32 By-product Mixed Solvent 233.54 By-product Aqueous AICI3	33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes By-product Hydrochloric Acid 30% By-product Sulphuric Acid 66% By-product Mixed Solvent 233.54 MT/M By-product Aqueous AICI3	33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes By-product Hydrochloric Acid 30% By-product Sulphuric Acid 66% By-product Mixed Solvent By-product Aqueous AICI3 1038 68 MT/M Recycle*

^{*} The applicant shall ensure disposal of by-products to Actual user/ End user having permission under Rule 9 of Hazardous and Other Wastes (Management & Transboundry Movement) Rules 2016 or else disposed off at CHWTSDF.

- The Board reserves the right to review, amend, suspend, revoke this consent and the same shall be binding on the industry.
- This consent should not be construed as exemption from obtaining necessary NOC/ permission from any other Government authorities.
- Industry shall comply with the conditions stipulated in the Environment Clearance dtd.12/04/2018.
- Industry shall operate & maintain ETP and 100% recycle treated effluent into process, for cooling tower make up and for utility purposes to achieve ZLD.
- Industry shall extend existing BG towards operation & maintenance of Pollution Control Systems and towards compliance of the EC and Consent to Operate conditions.
- Industry shall submit plan for de-sizing of existing ETP capacity for the treatment of 225.3 CMD effluent.
- This consent is issued with overriding effect on earlier Consent to Operate granted by the Board vide Consent No. Format 1.0/ CAC/ UAN No. 0000092277/ CO-2011000999 dtd. 17/11/2020.

For and on behalf of the Maharashtra Pollution Control Board.

> (Ashok Shingare IAS), Member Secretary

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02/00

Page 17 of 24

60d06b63b8d6bd7fab501ad8

Received Consent fee of -

Sr.No Amount(Rs.)		Transaction/DR.No.	Date	Transaction Type	
1	125000.00	MPCB-DR-4409	15/02/2021	NEFT	
2	91260.00	MPCB-DR-6147	28/05/2021	NEFT	

Paid Consent fees Rs. 3,75,000/- vide RTGS/NEFT/DR No. 0172828 dtd. 05/04/2016, Rs. 7,06,305/- vide RTGS/NEFT/DR No. 7610434 dtd. 25/05/2018 drawn on Axis Bank and Rs. 1,25,000/- vide DR No. MPCB-DR-0421 dtd. 08/06/2020.

Copy to:

- 1. Regional Officer, MPCB, Raigad and Sub-Regional Officer, MPCB, Raigad I
- They are directed to ensure the compliance of the consent conditions.
- 2. Chief Accounts Officer, MPCB, Sion, Mumbai
- 3. CC-CAC Desk- for record & website updating purpose.

Page 18 of 24

60d06b63b8d6bd7fab501ad8

SCHEDULE-I Terms & conditions for compliance of Water Pollution Control:

- A] As per your application, you have provided provided Effluent Treatment Plant (ETP) of designed capacity 740 CMD consisting of Primary, Secondary & Tertiary treatment followed by RO (260 KLD) & MEE (10 & 48 KLD) for the treatment of 242.9 CMD industrial effluent.
 - B] The Applicant shall operate the effluent treatment plant (ETP) to treat the trade effluent and recycle the entire treated effluent into the process for various purposes such as for cooling, process & Scrubbing with metering system so as to achieve Zero Liquid Discharge. There shall be no discharge on land or outside factory premises.
 - C] The Industry shall ensure connectivity online monitoring system to the MPCB server including separate energy meter for pollution control system.
- A) As per your application, you have provided Sewage Treatment Plant of designed capacity 41 CMD with conventional Activated Sludge process for the treatment of 33 CMD of sewage.
 - B] The Applicant shall operate the sewage treatment system to treat the sewage so as to achieve the following standards.

Sr.No	Parameters	Stand	lards	
1	BOD	Not to exceed	30 mg/l	
2	Suspended Solids	Not to exceed	100 mg/l	

- C] The treated sewage shall be recycled for secondary purposes to the maximum extent and remaining shall be discharged on land for gardening within premise after confirming above standards. In no case, sewage shall find its way for gardening / outside factory premises.
- 3. The Board reserves its rights to review plans, specifications or other data relating to plant setup for the treatment of waterworks for the purification there of & the system for the disposal of sewage or trade effluent or in connection with the grant of any consent conditions. The Applicant shall obtain prior consent of the Board to take steps to establish the unit or establish any treatment and disposal system or an extension or addition thereto.
- The industry shall ensure replacement of pollution control system or its parts after expiry of its expected life as defined by manufacturer so as to ensure the compliance of standards and safety of the operation thereof.
- The Applicant shall comply with the provisions of the Water (Prevention & Control of Pollution) Act, 1974 and as amended, by installing water meters and other provisions as contained in the said act:

Sr. No.	Purpose for water consumed	Water consumption quantity (CMD)
1.	Industrial Cooling, spraying in mine pits or boiler feed	306.00
2.	Domestic purpose	37.00
3.	Processing whereby water gets polluted & pollutants are easily biodegradable	236.30

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-96-2021 10:44:02 am) /QMS.PO6_F02/00

Page 19 of 24

Sr. No.	Purpose for water consumed	Water consumption quantity (CMD)
4.	Processing whereby water gets polluted & pollutants are not easily biodegradable and are toxic	0.00
5.	Gardening	70

 The Applicant shall provide Specific Water Pollution control system as per the conditions of EP Act, 1986 and rule made there under from time to time/ Environmental Clearance/ CREP guidelines.

SCHEDULE-II Terms & conditions for compliance of Air Pollution Control:

 As per your application, you have provided the Air pollution control (APC) system and erected following stack (s) to observe the following fuel pattern:

Stack No.	Source	APC System provided/pro posed	Stack Height(in mtr)	Type of Fuel	Sulphur Content(in %)	Pollutant	Standard
	Boilers (2 x 10	oilers (2 x 10 Separator, Bag TPH - 1 Filter followed		Briquettes 30	0.04	502	120 Kg/Day
S-1	Standby)	by Common Stack	30.00	MT/Day	0.04	PM	150 Mg/Nm³
	Thermopack (2 Lac KCal/Hr)	Common Stack		HSD 25 Kg/Hr		SO2	12 Kg/Day
S-2 to S-5	D G Sets (500, 2 x 1000 & 1010 KVA)	Acoustic Enclosure/ Stack of height 6.30 m for 500 KVA & 30 m each for 1000 & 1010 KVA	6.30	HSD 650 Kg/Hr	1	SO2	312 Kg/Day
S-6	Process Vent (MPP)	Scrubber with Caustic Solution	7.00	•	*	HCI	35 Mg/Nm³
S-7	Process Vent (MPP)	Scrubber with Caustic Solution	7.00		•	нсі	35 Mg/Nm³
S-8	Process Vent (PP-1)	Scrubber with Caustic Solution	10.00		a	HCI	35 Mg/Nm³
S-9	Process Vent (PP-2)	Scrubber with Caustic Solution	7.00	(*)	28	HCI	35 Mg/Nm³
S-10	Process Vent (PP-3/4/5)	Scrubber with Caustic Solution	13.00			HCI	35 Mg/Nm³
5-11	Process Vent (PP-3/4/5)	Scrubber with Caustic Solution	13.00	(*)	÷	HCI	35 Mg/Nm³
S-12	Process Vent (PP-3/4/5)	Scrubber with Caustic Solution	13.00		(2)	HCI	35 Mg/Nm³

Page 20 of 24

60d06b63b8d6bd7fab501ad8

Stack No.	Source	APC System provided/pro posed	Stack Height(in mtr)	Type of Fuel	Sulphur Content(in %)	Pollutant	Standard
S-13	Process Vent (PP-6)	Scrubber with Caustic Solution	7.00		8	HCI	35 Mg/Nm³
S-14	Process Vent (ETP)	Scrubber with Caustic Solution	13.00			HCI	35 Mg/Nm³

- The Applicant shall provide Specific Air Pollution control equipments as per the conditions of EP Act, 1986 and rule made there under from time to time/ Environmental Clearance / CREP guidelines.
- The Applicant shall obtain necessary prior permission for providing additional control
 equipment with necessary specifications and operation thereof or alteration or
 replacement/alteration well before its life come to an end or erection of new pollution
 control equipment.
- The Board reserves its rights to vary all or any of the condition in the consent, if due to any technological improvement or otherwise such variation (including the change of any control equipment, other in whole or in part is necessary).

SCHEDULE-III Details of Bank Guarantees:

Sr. No	Consent (C2E/ C2O /C2R)	Amt of BG Imposed	Submission Period	Purpose of BG	Compliance Period	Validity Date
1	C2O (Expansion & Amalgamation)	500000	Existing	Towards O & M of pollution control system & compliance of consent to operate	31.08.2023	31.12.2023
2	C2O (Expansion & Amalgamation)	200000	Existing	Towards not to increase Consented production quantity	31.08.2023	31.12.2023

**Existing BG obtained for above purpose if any, may be extended for period of validity as above.

BG Forfeiture History

Srno.	Consent (C2E/C2O/C2R)	Amount of BG imposed	Submission Period	Purpose of BG	Reason of BG Forfeiture
			NA		

BG Return details

Srno. Consent (C2E/C2O/C2R) BG imposed Purpose of BG Amount of BG Returned

NA

Innovassynth Technologies (India) Limited/CO/UAN No. MPCB-CONSENT-0000104447 (01-06-2021 10:44:02 am) /QMS.PO6_F02/00

Page 21 of 24

60d06b63b8d6bd7fab501ad8

SCHEDULE-IV General Conditions:

- The Board reserves its rights to vary all or any of the condition in the consent, if due to any technological improvement or otherwise such variation including the change of any control equipment, other in whole or in part is necessary.
- The applicant shall provide facility for collection of environmental samples and samples of trade and sewage effluents, air emissions and hazardous waste to the Board staff at the terminal or designated points and shall pay to the Board for the services rendered in this behalf.
- 3. The Energy source for lighting purpose shall preferably be LED based
- The PP shall harvest rainwater from roof tops of the buildings and storm water drains to recharge the ground water and utilize the same for different industrial applications within the plant
- 5. Conditions for D.G. Set
 - a) Noise from the D.G. Set should be controlled by providing an acoustic enclosure or by treating the room acoustically.
 - b) Industry should provide acoustic enclosure for control of noise. The acoustic enclosure/ acoustic treatment of the room should be designed for minimum 25 dB (A) insertion loss or for meeting the ambient noise standards, whichever is on higher side. A suitable exhaust muffler with insertion loss of 25 dB (A) shall also be provided. The measurement of insertion loss will be done at different points at 0.5 meters from acoustic enclosure/room and then average.
 - c) Industry should make efforts to bring down noise level due to DG set, outside industrial premises, within ambient noise requirements by proper sitting and control measures.
 - d) Installation of DG Set must be strictly in compliance with recommendations of DG Set manufacturer.
 - e) A proper routine and preventive maintenance procedure for DG set should be set and followed in consultation with the DG manufacturer which would help to prevent noise levels of DG set from deteriorating with use.
 - f) D.G. Set shall be operated only in case of power failure.
 - g) The applicant should not cause any nuisance in the surrounding area due to operation of D.G. Set.
 - h) The applicant shall comply with the notification of MoEFCC, India on Environment (Protection) second Amendment Rules vide GSR 371(E) dated 17.05.2002 and its amendments regarding noise limit for generator sets run with diesel.
- 6. The applicant shall maintain good housekeeping.
- The non-hazardous solid waste arising in the factory premises, sweepings, etc. be disposed of scientifically so as not to cause any nuisance / pollution. The applicant shall take necessary permissions from civic authorities for disposal of solid waste.
- The applicant shall not change or alter the quantity, quality, the rate of discharge, temperature or the mode of the effluent/emissions or hazardous wastes or control equipments provided for without previous written permission of the Board. The industry will not carry out any activity, for which this consent has not been granted/without prior consent of the Board.
- The industry shall ensure that fugitive emissions from the activity are controlled so as to maintain clean and safe environment in and around the factory premises.
- The industry shall submit quarterly statement in respect of industries obligation towards consent and pollution control compliance's duly supported with documentary evidences (format can downloaded from MPCB official site).
- The industry shall submit official e-mail address and any change will be duly informed to the MPCB.

60d06b63b8d6bd7fab501ad8

- The industry shall achieve the National Ambient Air Quality standards prescribed vide Government of India, Notification No. B-29016/20/90/PCI-L dated. 18.11.2009 as amended.
- 13. The Board reserves its rights to review plans, specifications or other data relating to plant setup for the treatment of waterworks for the purification thereof & the system for the disposal of sewage or trade effluent or in connection with the grant of any consent conditions. The Applicant shall obtain prior consent of the Board to take steps to establish the unit or establish any treatment and disposal system or an extension or addition thereto.
- 14. The industry shall ensure replacement of pollution control system or its parts after expiry of its expected life as defined by manufacturer so as to ensure the compliance of standards and safety of the operation thereof.
- 15. The PP shall provide personal protection equipment as per norms of Factory Act
- Industry should monitor effluent quality, stack emissions and ambient air quality monthly/quarterly.
- 17. Whenever due to any accident or other unforeseen act or even, such emissions occur or is apprehended to occur in excess of standards laid down, such information shall be forthwith Reported to Board, concerned Police Station, office of Directorate of Health Services, Department of Explosives, Inspectorate of Factories and Local Body. In case of failure of pollution control equipments, the production process connected to it shall be stopped.
- 18. The applicant shall provide an alternate electric power source sufficient to operate all pollution control facilities installed to maintain compliance with the terms and conditions of the consent. In the absence, the applicant shall stop, reduce or otherwise, control production to abide by terms and conditions of this consent.
- 19. The industry shall recycle/reprocess/reuse/recover Hazardous Waste as per the provision contain in the Hazardous and Other Wastes (M & TM) Rules 2016, which can be recycled /processed /reused /recovered and only waste which has to be incinerated shall go to incineration and waste which can be used for land filling and cannot be recycled/reprocessed etc. should go for that purpose, in order to reduce load on incineration and landfill site/environment.
- An inspection book shall be opened and made available to the Board's officers during their visit to the applicant.
- Industry shall strictly comply with the Water (P&CP) Act, 1974, Air (P&CP) Act, 1981 and Environmental Protection Act, 1986 and industry specific standard under EP Rules 1986 which are available on MPCB website (www.mpcb.gov.in).
- 22. Separate drainage system shall be provided for collection of trade and sewage effluents. Terminal manholes shall be provided at the end of the collection system with arrangement for measuring the flow. No effluent shall be admitted in the pipes/sewers downstream of the terminal manholes. No effluent shall find its way other than in designed and provided collection system.
- Neither storm water nor discharge from other premises shall be allowed to mix with the effluents from the factory.
- 24. The industry should not cause any nuisance in surrounding area.
- 25. The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standard in respect of noise to less than 75 dB (A) during day time and 70 dB (A) during night time. Day time is reckoned in between 6 a.m. and 10 p.m. and night time is reckoned between 10 p.m. and 6 a.m.

Page 23 of 24

- 26. The industry shall create the Environmental Cell by appointing an Environmental Engineer, Chemist and Agriculture expert for looking after day to day activities related to Environment and irrigation field where treated effluent is used for irrigation.
- 27. The applicant shall provide ports in the chimney/(s) and facilities such as ladder, platform etc. for monitoring the air emissions and the same shall be open for inspection to/and for use of the Board's Staff. The chimney(s) vents attached to various sources of emission shall be designated by numbers such as S-1, S-2, etc. and these shall be painted/ displayed to facilitate identification.
- 28. The industry should comply with the Hazardous and Other Wastes (M & TM) Rules, 2016 and submit the Annual Returns as per Rule 6(5) & 20(2) of Hazardous and Other Wastes (M & TM) Rules, 2016 for the preceding year April to March in Form-IV by 30th June of every year.
- 29. The applicant shall install a separate meter showing the consumption of energy for operation of domestic and industrial effluent treatment plants and air pollution control system. A register showing consumption of chemicals used for treatment shall be maintained.
- 30. The applicant shall bring minimum 33% of the available open land under green coverage/ plantation. The applicant shall submit a yearly statement by 30th September every year on available open plot area, number of trees surviving as on 31st March of the year and number of trees planted by September end.
- 31. The Board reserves its rights to review plans, specifications or other data relating to plant setup for the treatment of waterworks for the purification thereof & the system for the disposal of sewage or trade effluent or in connection with the grant of any consent conditions.
- 32. The firm shall submit to this office, the 30th day of September every year, the Environment Statement Report for the financial year ending 31st March in the prescribed FORM-V as per the provisions of Rule 14 of the Environment (Protection) (second Amendment) Rules, 1992.
- 33. The Applicant shall obtain necessary prior permission for providing additional control equipment with necessary specifications and operation thereof or alteration or replacement/alteration well before its life come to an end or erection of new pollution control equipment.
- 34. The Board reserves its rights to vary all or any of the condition in the consent, if due to any technological improvement or otherwise such variation (including the change of any control equipment, other in whole or in part is necessary).
- 35. The applicant shall provide facility for collection of environmental samples and samples of trade and sewage effluents, air emissions and hazardous waste to the Board staff at the terminal or designated points and shall pay to the Board for the services rendered in this behalf.

For and on behalf of the Maharashtra Pollution Control Board.

> (Ashok Shingare IAS) Member Secretary

> > Page 24 of 24

Annexure II Mumbai Waste Management Ltd, Membership Certificate Your text here 4

Towards sustainable growth

Mumbai Waste Management Limited

Certificate

Ms. Innovasynth Technologies (I) Ltd.

is a registered member of

CHW-TSDF at MIDC, Taloja

for safe & secure disposal of

Hazardous Waste.

Membership no.: MWML - HzW .. KHP - 320

This Certificate is valid up to

31 St March 2022

Herry

Onkar A. Kulkarni Manager - MBD Somnath Malgar Director

An ISO 9001:2015, ISO 14001 : 2015 & ISO 45001 : 2018 Certified Company
MWML Laboratory is accredited by NABL and Approved by MoEF

Annexure III Scrubber List

Sr. No.	Stack Attached To	APC sysytem	Stack heights in Mtrs.
1	Process Vent (MPP)	Scrubber with	7
1	Process Vent (MPP)	caustic solution	
2	Process Vent (MPP)	Scrubber with	7
2	Process Vent (MPP)	caustic solution	7
2	December (Vent (DD1)	Scrubber with	10
3	Process Vent (PP1)	caustic solution	10
4	Bus sees Mont (BB3)	Scrubber with	7
4	Process Vent (PP2)	caustic solution	7
_	D \(\(\DD \) \(\lambda \(\DD \) \(\lambda \(\DD \) \(\lambda \(\DD \) \(\DD \) \(\lambda \(\DD \) \(\DD \) \(\DD \) \(\DD \(\DD \) \(\DD \) \(\DD \) \(\DD \(\DD \) \(\DD \) \(\DD \) \(\DD \(\DD \) \(\D	Scrubber with	10
5	Process Vent (PP3/4/5)	caustic solution	13
-	D Va (DD2/4/E)	Scrubber with	12
6	Process Vent (PP3/4/5)	caustic solution	13
7	D Vont (DD2/4/E)	Scrubber with	12
7	Process Vent (PP3/4/5)	caustic solution	13
•	Description (DDC)	Scrubber with	7
8	Process stacks (PP6)	caustic solution	7
•	Dungana Vant (FTD)	Scrubber with	12
9	Process Vent (ETP)	caustic solution	13

EXECUTIVE ENGINEER, RAIGAD IRRIGATION DIVISION, KOLAD THANE IRRIGATION CIRCLE, THANE WATER BILL

Innovassynth Tech. (I) Ltd., 01.04.2020 To 31.03.2026 Water Use Type of Dom. -Hadu-Indu 0 Daily sanction Quota (In Cum) in a Month No of Days Hort. 0 31 No of Cums /Day Ind. 1200 1200 Total Cums 1200

Water User :-

Agreement / Permission :-

Permanent Agreement

Suplementry Agreement:-

No

Patalganga River-

1 Cum = 1,000 Liters

Expiry Dt.of Agreement:-Agreement Period :-

31.03.2026

Source of Water

Referance Of Original

& Govt. of Maha. WRD | er No 2012 (577/12) Dt. 27.02.2014.
To, The Manager, Innovassynth Tech. (I) Ltd., Khopoli, Tal:khalapur

C.E.Konkan Region, Mumbai 89.01 (89/87)T5/1823. Dt 23.05.2003

Industrial

No. 5/2021

File No 9

Month:

Aug-21

Date of issue of Bill :-Outword No.:-18.09.2021

Cum

ing 21	donth
131900	Reading
115870	Reading
16030	Consumed

					-		
	9	Amount at penal Rate			37200	2000	Total Cum
	10	previous hill if any	Late fee		33480	12400	@90%
	11	amount of bill Col No. 5+6+8+9	Total		42780	41400	@115%
						Ang-21	Month
Recycleing	Cum	Last	Current	RE		191900	Current Reading
32.35%		17415.46 5185.99 5185.99	22601.45	RECYCLE For Aug 21		115870	Previous Reading
ecyc	deing Lette	is charge of No EE/RU	is Per D/PB-	921		16030	Consumed

3,85,690 Rupees Three Lack Fourly Seven Thousand One Hundred Twenty One Only)

57,853

3,47,121

347121

Annexure IV Water use:
Purpose:
Sanction:
To, The May
P.
Less:- Reco

Particulars

Pumped

charged

No.of Cum

No.of Cum

Rate

Amount

@75%Due

Col.No.6

sanctioned more than

(Onota /

Local cess at 20% of

No.of Cums

U

569203 569203

-113841 113841

> 0 0

-683044 683044

0%

used ahove to recycle

Less:- Receipts after last bill Arrears as per last bill

Industrial

Current Bill for Aug 2021

16030

33480

11.52

385690

289267

57853

Notes :- 1) Payment should be made demand draft in favour of "The Executive Engineer, Raigad Irrigation Division, Koład, Tal.Roha, Dist.Ralgad. Payble at Bank of Maharashtra, Varasgaon (Kolad) Branch, Roha-Raigad.

07.10.2021 late fee i.s. (Rs

3471 /-) will be charged in the next bill

2) If the payment is not made on or before Dt.

3) If the Cums consumed over & above the monthly sanctioned Quota, the Penal Rate will be 150% for total consumption.

4) Demand drafts will be accepted in the office of the Executive Engineer, Raigad Irrigation Division,

Kolad, Tal Roha, Dist Raigad on any working day between 11.00 AM. To 17.00 PM. Except holidays

शासन, सामान्य प्रशासन विभाग, परिपत्रक क. मुसका-2011/54/का-1,मंत्रालय, मुंबई, दि. 11 फेब्रुवारी, 2011 नुसार सदर पत्राची मुद्रीत प्रत पाठविण्यात येणार नाही Copy submited to the Executive Engineer, Raigad Irrigation Division, Kolad.

Irrigation Sub-Division Sub Divisional Engineer Karjat - Triming

Smt. S.C.Kapade, Asst Engr II

Tal - Khalapur, Dist - Raigad Sinchan Section, Bhilawale

EXECUTIVE ENGINEER, RAIGAD IRRIGATION DIVISION, KOLAD THANE IRRIGATION CIRCLE, THANE

WATER BILL

Agreement / Permission :-Water User :-Expiry Dt.of Agreement :-Agreement Period :-Purpose Water use Source of Water:-Suplementry Agreement:-Patalganga River No 01.04.2020 To 31.03.2026 Innovassynth Tech. (I) Ltd., Permanent Agreement Industrial 1 Ct,m = 1,000 Liters31.03.2026

170	Hort
The state of the s	

No. 4/2021

File No 9

Month:-

June & July 21

Date of issue of Bill:

Outword No.:-

13.08.2021

Previous Reading

84500 99020

14520 16850

Consumed

Cum

Water

Ind

Type

Referance Of Original & Govt. of Maha. WRD letter No 2012 (577/12) Dt. 27.02.2014. C.E.Konkan Region, Mumbai 89.01 (89/87) T5/1823, Dt. 23.05.2003

Arrears as per last bill To, The Manager, Innovassynth Tem. (1) Ltd., Khopoli, Tal:khalapur Current Bill for July 2021 Less:- Receipts after last bill Current Bill for June 2021 Particulars Pumped No.of Cum 16850 14520 charged No.of 33480 32400 Cum Rate 11.52 11.52 Amount 3,73,248 385690 373248 CT @75%Due Amt, Billed used ahove to recycle 5,69,203 -289267 289267 279936 289267 at 20% of Local cess Col.No.6 1,13,841 -57853 55987 57853 sanctioned No.of Cums more than (Chucha) penal Rate Amount at 9 0 hill if any previous Late fee on 10 0 bill Col No. amount of 5+6+8+9 Total 6,83,044 -347121 347121 335923 347121

(Rupees Six Lack Eighty Three Thousand Fourty Four Only

6830 /-) will be charged in the next bill

Notes:- 1) Payment should be made demand draft in favour of "The Executive Engineer, Raigad Irrigation Division Kolad, Tal. Roha, Dist. Raigad. Payble at Bank of Maharashtra, Varasgaon (Kolad) Branch, Roha-Raigad.

2) If the payment is not made on or before Dt. 04.09.2021 late fee i.s. (Ks

3) If the Cums consumed over & above the monthly sanctioned Quota, the Penal Rate will be 150% for total consumption

4) Demand drafts will be accepted in the office of the Executive Engineer, Raigad Irrigation Division.

Kolad, Tal.Roha, Dist.Raigad on any working day between 11.00 AM. To 17.00 PM, Except holidays

Copy submitted to the Executive Engineer, Raigad Irrigation Division, Kolad.

प्रत पाठविण्यात येणार नाही शासनं, सामान्य प्रशासनं विभाग, परिपत्रक के, मुसका-2011/54/का-1, मंत्रालय, मुंबई, दि. 11 फेब्रुवारी, 2011 नुसार सदर पत्राची मुदीत

Smt. S.C.Kapade, Asst Engr II Tal - Khalapur, Dist - Raigad Sinchan Section, Bhilawale

> Current Recycleing ast RECYCLE For July 21 17415.46 11447.35 5968.11 5968.11 35.42% Recycleing is charge as Per EE's Letter No EE/RID/PB 1/3879/2014, Dt 27.05.2014

Cum Consumed

Recycleing

35.94%

Current

11447.35 ETP

6229.01

5218.34

Recycleing is charge as Per

EE's Letter No EE/RID/PB 1/3879/2014, DE 27.05.2014

5218.34

RECYCLE For June 21

JSE

Irrigation Sub-Division Sub Divisional Engineer

EXECUTIVE ENGINEER, RAIGAD IRRIGATION DIVISION, KOLAD THANE IRRIGATION CIRCLE, THANE

Suplementry Agreement: Expiry Dt.of Agreement: Agreement / Permission :-C.E.Konkan Region, Mumbai 89.01 (89/87)T5/1823, Dt. 23.05.2003 Patalganga River 31.03.2026 01.04.2020 To 31.03.2026 Permanent Agreement Innovassynth Tech. (I) Ltd., 1 Cum = 1,000 Liters Water Type Ind Dom. 0 Daily sanction Quota (In Cum) Hort. 0 WATER BILL 1200 Ind. **Total Cums** Outword No. :-Date of issue of Bill :-Month :-No. 6/2021 21.10.2021 Sep-21

1878

File No 9

e of r Use	No of Days in a Month	No of Cums /Day	Total Cum	@90%	@115%	Month	Current Reading	Previous Reading	Cum
du	30	1200	36000	32400	41400	Sep-21	146550	131900	14650
du	31	1200	37200	33480	42780		Market Start	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Purpose :-

Water use: Source of Water :-

Agreement Period :-

Water User :-

Referance Of Original

sanction :-

& Govt. of Maha. WRD letter No 2012 (577/12) Dt. 27.02.2014.

Less :- Receipts after last bill Arrears as per last bill Current Bill for Sept 2021 To, The Manager, Innovassynth Tech. (I) Ltd., Khopoli, Tal:khalapur Particulars Pumped 14650 No.of Cum charged 32400 No.of Cum 11.52 Rate 4 Amount 3,73,248 373248 used ahove @75%Due Amt Billed to recycle 2,79,936 -289267 279936 289267 at 20% of Local cess Col.No.6 55,987 -57853 55987 57853 sanctioned more than No.of Cums 60mota/ penal Rate Amount at 0 hill if any previous | bill Col No. Late fee no 0 amount of 5+6+8+9 Total 3,35,923 -347121 347121 335923

177	
PH.	
200	
42.	-
teer, Raigad Irrigation Division,	· A
P	=
7	70
-	m
24	76
20	TO
66	-
Di-	944
O.	Inq
	=
H	7
+	22
1	100
44	
#	್ರಾಬ
=	C
8	- 120
=	183
-	Pen
\simeq	-
20	-
52	- 3
S	J
0	
8	127
5	-
	ಾ
	CD
	1
	-
	=
	~
	- =
	50
	- 22
	ಾ
	0
	-
	1
	=
	=
	SW.
	100
	pan
	=
	=
	· PA
	-5
	· CP
	D.
	-
	-2
	2
	100
	14
	=
	44
	-
	-
	=
	I Imp
	CO
	m
	(Kupees Three Lack Thirty Five Thousand Nine Hundred Twenty Three Only)
	0
	=
	E.
	4
	-

3359 /-) will be charged in the next bill

Notes: 1) Payment should be made demand draft in favour of" The Executive Kolad, Tal.Roha, Dist.Raigad. Payble at Bank of Maharashtra, Varasgaon (Kolad) Branch, Roha-Raigad.

3) If the Cums consumed over & above the monthly sanctioned Quota, the Penal Rate will be 150% for total consumption. 2) If the payment is not made on or before Dt. 10.11.2021 late fee i.s. (Rs.

4) Demand drafts will be accepted in the office of the Executive Engineer, Raigad Irrigation Division,

Kolad, Tal.Roha, Dist.Raigad on any working day between 11.00 AM. To 17.00 PM. Except holidays

शासन, सामान्य प्रशासन विभाग, परिपत्रक क. मुसका-2011/54/का-1,मंत्रालय, मुंबई, दि. 11 फेब्रुवारी, 2011 नुसार सदर पत्राची मुद्रीत पत पाठविण्यात येणार नाही. Copy submited to the Executive Engineer, Raigad Irrigation Division, Kolad.

> Recycleing Cum Current Consumed Last RECYCLE For Sept 21 27208.54 22601,45 ETP 31.45% 4607.09 4607.09

Recycleing is charge as Per EE's Letter No EE/RID/PB 1/3879/2014, Dt. 27.05.2014

Irrigation Sub-Division Sub Divisional Engineer Karjat Philam

Smt. S.C.Kapade, Asst Engr II Sinchan Section, Bhilawale Tal - Khalapur, Dist - Raigad

Annexure V

TANK FARM PHOTOGRAPH

Annexure VI Hazardous waste Manifest

Manifest For Hazardous And Other Waste

Submitted Date: 30-09-2021

Apply as Generator

Unit Name	Plant Name	Submit To
Innovassynth Technologies (I) Ltd	Innovassynth Technologies (I) Ltd	SRO-Raigad

Sender	name and mailing address (including phone	no. and email.)	
Sender Name	Sender Address	Sender Mobile No.	Sender Email
Innovassynth Technologies (I) Ltd.	Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad 410203	7020687648	env@innovassynth.com

Sender authorisation No	Manifest Document No	Membership No (If any)
Format: 1.0//UAN No. 0000104447/CO-2106000958	MPCB-HW_MANIFEST-0000142101	NA

Transporter Name	Vehicle No.	Transporter Address	Transporter Mobile No.	Transporter Email
M/s. Thakkar Inorganics Pvt.Ltd. Plot No.13,Vill.Rasayani,Tal.Panvel,Dist.Raigad	MH-46/BM-2932	Plot no. 13, Village Rasayani, Tal- Panvel, Dist- Raigad	9321070719	thakkarinorganics@gmail.com

1111					A STATE OF		Vaste Dis	posal Details	460		2.3450	
Sr No	Date	Waste Category	Waste Name	Waste QTY	Waste Unit	Waste Disposal To	Facility	State	Name of unit	Address of unit	Contact of unit	Email of unit
1	30-09-2021	38.2 Spent acid	Spent Sulphuric Acid	19.500	МТ	Recycler		Maharashtra	M/s. Thakkar Inorganics Pvt. Ltd.	Plot no. 13, Village Rasayani, Tal- Panvel, Dist- Raigad	9321070719	thakkarinorganics@gmail.com
	Number	of Containe	ers		Physi	cal Form	mSame.	Spe	ecial Handli	ng Instruct	tions And Add	litional Information
		1			L	iquid		CAR.		Use ap	propriate PPEs.	

B

Near M Khopoli, E

M/s INNOVASSYNTH TECHNOLOGIES (INDIA) LTD Near Mumbai-Pune Road, Khopoli, Dist-Raigad-410 203

Manifest For Hazardous And Other Waste

Submitted Date: 09-09-2021

Apply as Generator

Unit Name	Plant Name	SRO-Raigad I	
Innovassynth Technologies (I) Ltd	Innovassynth Technologies (I) Ltd		

Sender name and mailing address (including phone no. and email.)						
Sender Name	Sender Address	Sender Mobile No.	Sender Email			
Innovassynth Technologies (I) Ltd.	Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad 410203	9405252557	env@innovassynth.com			

Sender authorisation No	Manifest Document No	Membership No (If any)
Format: 1.0/UAN No. 00001044447/CO-2106000958	MPCB-HW_MANIFEST-0000136688	NA

Transporter's name and address (including phone no. and email.)							
Transporter Name	Vehicle No.	Transporter Address	Transporter Mobile No.	Transporter Email			
M/s. Eighteen Acid And Chemical Enterprises 88 Hissa / Part 8, Khoni, Taloja Road, Dist. Thane		88/Hissa /parts ,link Road Near Ghoda company At poat Khoni	9821329384	satish_acid@rediffmail.com			

	TRACE TO S					W	aste Disp	osal Details	W2	1. PER	1323	
Sr No	Date	Waste Category	Waste Name	Waste QTY	Waste Unit	Waste Disposal To	Facility	State	Name of unit	Address of unit	Contact of unit	Email of unit
1	09-09-2021	38.2 Spent acid	Spent Hydrochloric Acid	17.930	МТ	Recycler		Maharashtra	M/s Eighteen Acid & Chemical Enterprises	88 Hissa/ Part B, Khoni,Taloja Road,Dist- Thane	9821329384	satish_acid@rediffmail.com
	Numbe	r of Contair	iers		Physi	cal Form		Sp	ecial Handlii	ng Instruction	ns And Addition	onal Information
-	-	1			L	iquid				Use appro	priate PPEs	

Shitter

M/s. INNOVASSYNTH TECHNOLOGIES (INDIA) LTD

Near Mumbai-Pura (2013)

Khopoli, Dist-Raigad-410 203

Manifest For Hazardous And Other Waste

Appl

The other waste	Submitted Date: 14-09-2021
oly as Generator	

Unit Name	Plant Name	Submit To
Innovassynth Technologies (I) Ltd	Innovassynth Technologies (I) Ltd	SRO-Raigad

Sender Name	Sender Address	Sender Mobile No.	Sender Email
Innovassynth Technologies (I) Ltd.	Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad 410203	9405252557	env@innovassynth.com

Sender authorisation No	Manifest Document No	Membership No (If any)
Format: 1.0/UAN No. 00001044447/CO-2106000958	MPCB-HW_MANIFEST-0000137936	

Transporter Name	Vehicle No.	Transporter Address	Transporter Mobile No.	Transporter Email
Mumbai Waste Management Limited, Plot No. P - 32 and P - 32 (part), MIDC, Taloja, Panvel.	MH-46/BM-5643	MWML, Taloja , Raigad	8422877169	mbdmwml@ramky.com

						N	laste Disposa	Details		No. 5 de Starfford	Control of the last	
Sr No	Date	Waste Category	Waste Name	Waste QTY	Waste Unit	Waste Disposal To	Facility	State	Name of unit	Address of unit	Contact of unit	Email of unit
1	14-09-2021	37.3 Concentration or evaporation residues	MEE solid waste for land fill	9.170	MT	CHWTSDF	M/s. Mumbai Waste Management Ltd. (MWML), Taloja, Raigad.	Maharashtra	M/s. Mumbai Waste Management Ltd. (MWML)	Taloja, Raigad.	8422877169	mbdmwnil@ramky.com
	Number of Containers Physical Form							Speci	ial Handling II	structions	And Addition	nal Information
		33				solid				Use approp		

wampal waste Management kk. Security Main Gate Entry

MUMBAI WASTE MANAGEMENT LTD TALOJA

4 SEP-2021

Sign'

Soraly Melisi No /2/09

14/09/1019

18-20

M. INNOVAȘSYNTH TECHNOLOGIES (INDIA) LTD Near Mumbai-Print Road.

Submitted Date: 11-08-2021

Apply as Generator

Plant Name	Submit To
Innovassynth Technologies (I) Ltd	SRO-Raigad

Sender name and mailing address (including phone no. and email.)										
Sender Name	Sender Address	Sender Mobile No.								
Innovassynth Technologies (I) Ltd.	Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad 410203	9890684211	env@innovassynth.com							

Sender authorisation No	Manifest Document No	Membership No (If any)
Format: 1.0/CAC/UAN No. 00000092277/CO-2011000999	MPCB-HW_MANIFEST-0000130284	MWML-HzW-Khp-320

Transporter Name	Vehicle No.	Transporter Address	Transporter Mobile	Transporter Email	
	自由规定组织设置		No.	to the section and	
Mumbai Waste Management Limited, Plot No. P - 32 and P - 32 (part), MIDC, Taloja, Panvel.	MH-46/BM-5647	MWML, Taloja , Raigad	8422877169	mbdmwml@ramky.cor	

5400	William Co.	N 2 2 7 50	CAN LAND		E. O YORK	- 105.70	Waste Dispos	al Details				
Sr No	Date	Waste Category	Waste Name	Waste	Waste Unit	Waste Disposal To	Facility -	State	Name of unit	Address of unit	Contact of unit	Email of unit
1	11-08-2021	35.3 Chemical sludge from waste water treatment	ETP sludge for land fill	4.240	МТ	CHWTSDF	M/s. Mumbai Waste Management Ltd. (MWML), Taloja, Raigad,	Maharashtra	M/s. Mumbai Waste Management Ltd. (MWML)	Taloja, Raigad	8422877169	mbdmwml@ramky.com
	Number	of Containe	rs	15 75 1	Ph	ysical Forn	1	Spec	ial Handling I	nstruction	s And Additio	nal Information
Pate	114111111111	1				solid				Use appro	priate PPEs	

Wumoai waste Management k Security Man Line Entry

Materia: Inf

11/8/21 h

MUMBAI WASTE MANAGEMENT LTD TALOJA 34tam

1 1 AUG 7071

Sign.

M/s INNOVASSYNTH TECHNOLOGIES (INDIA) LTD Near Mumbai-Pune Road. Khopoli, Dist-Raigad-410 203

Manifest For Hazardous And Other Waste

Apply as Generator

Unit Name	Plant Name	Submit To
Innovassynth Technologies (I) Ltd	Innovassynth Technologies (I) Ltd	SRO-Raigad

Sender name and mailing address (including phone no. and email.)										
Sender Name	Sender Address	Sender Mobile No.	Sender Email							
Innovassynth Technologies (I) Ltd.	Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad 410203	9405252557	env@innovassynth.com							

Sender authorisation No	Manifest Document No	Membership No (If any)
Format: 1.0/UAN No. 00001044447/CO-2106000958	MPCB-HW_MANIFEST-0000139292	

Transporter Name	Vehicle No.	and address (including pho Transporter Address	Transporter Mobile	Transporter Email
Mumbai Waste Management Limited, Plot No. P - 32 and P - 32 (part), MIDC, Taloja, Panvel.	MH-46/F-1573	m/smumbai waste management ltd (MWML) taloja raigad	8422877169	mbdmwml@ramky.com

- 1			COLUMN THE SE	515		Wa	ste Disposal L	Details	S. C. S.	E PAPET FO		
Sr No	Date	Waste Category	Waste Name	Waste QTY	Waste Unit	Waste Disposal To	Facility	State	Name of unit	Address of unit	Contact of unit	Email of unit
1	18-09-2021	20.3 Distillation residues	Distillation Residue(waste for incineration)	7.950	MT	CHWTSDF	M/s. Mumbai Waste Management Ltd. (MWML), Taloja, Raigad,	Maharashtra	M/s. Mumbai Waste Management Ltd. (MWML)	Taloja, Raigad.	8422877169	mbdmwml@ramky.con
Number of Containers					Phy	sical Form	经 图图 10号	Spec	ial Handling Ir	structions	And Addition	nal Information
(E	/	38				Solid				Use approp		

чищові waste Managefilem ке. MUMBAI WASTE MANAGEMENT SECURITY Main Gate Entry Material In Out 5 TALOJA

SI NO 12335

1 8 SEP 2021

18109M Status

Sign'

19:50

M's INNOVASSYNTH TECHNOLOGIES (INDIA) LTD Near Mumbai-Pune Road, Khopoli, Dist-Raigad-410 203

Submitted Date: 18-09-2021

Apply as Generator

Unit Name	Plant Name	Submit To	
Innovassynth Technologies (I) Ltd	Innovassynth Technologies (I) Ltd	SRO-Raigad I	

Sender name and mailing address (including phone no. and email.)						
Sender Name	Sender Address	Sender Mobile No.	Sender Email			
Innovassynth Technologies (I) Ltd.	Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad 410203	7020687648	env@innovassynth.com			

Sender authorisation No	Manifest Document No	Membership No (If any)
Format: 1.0//UAN No. 0000104447/CO-2106000958	MPCB-HW_MANIFEST-0000141623	MWML-HzW-Khp-320

Transporter's name and address (including phone no. and email.)								
Transporter Name	Vehicle No.	Transporter Address	Transporter Mobile No.	Transporter Email				
Mumbai Waste Management Limited, Plot No. P - 32 and P - 32 (part), MIDC, Taloja, Panvel.	MH-46/BM-4617	MWML Taloja	8422877169	mbdmwml@ramky.com				

						И	laste Disposa	Details		100		
Sr No	Date	Waste Category	Waste Name	Waste QTY	Waste Unit	Waste Disposal To	Facility -	State	Name of unit	Address of unit	Contact of unit	Email of unit
1	28-09-2021	33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	Waste Empty Bags	1.530	MT	CHWTSDF	M/s. Mumbai Waste Management Ltd. (MWML), Taloja, Raigad.	Maharashtra	M/s. Mumbai Waste Management Ltd. (MWML)	Taloja, Raigad.	8422877169	mbdmwml@ramky.com
	Number	of Containers			Ph	sical Form		Speci	al Handling II	nstructions	And Addition	nal Information
		1				Solid Use appropriate PPEs.						

MUMBAI WASTE MANAGEMENT LTD TALOJA

28 547 2041

Sign.

M/s. INNOVASSYNTH TECHNOLOGIES (INDIA) LTD

Near Mumbai-Punc Road,

Khopoli. Distributa Waste Management & Security Main Gate Entry

Submitted Date : 28-09-2021

Material In Out

12808 28.9.21 18.500000

Manifest For Hazardous And Other Waste

Submitted Date: 29-06-2021

Apply as Generator

Unit Name	Plant Name	Submit To
Innovassynth Technologies (I) Ltd	Innovassynth Technologies (I) Ltd	SRO-Raigad I

Sender name and mailing address (including phone no. and email.)						
Sender Name	Sender Address	Sender Mobile No.	Sender Email			
Innovassynth Technologies (I) Ltd.	Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad 410203	9405252557	env@innovassynth.com			

Sender authorisation No	Manifest Document No	Membership No (If any)
Format: 1.0/UAN No. 00001044447/CO-2106000958	MPCB-HW_MAN(FEST-0000108471	NA

		d address (including phone no. a		
Transporter Name	Vehicle No.	Transporter Address	Transporter Mobile No.	Transporter Email
M/s. Skylube Corporation Shop No. 43, Benjamin Compound Shastri Nagar, Opp Kala Godown Kurla Kalina Road, Chunabatti, Santacruz (W),Mumbai	MH-04/GF-3600	shop no 43 benjamin compund sastri nagar opp kala godown kurla Ikalina road chuna bhati sanat cruse	9820286339	skylube@yahoo.com

			755 mg 115		100	Wast	e Disposa	l Details		3.254		
Sr No	Date	Waste Category	Waste Name	Waste QTY	Waste Unit	Waste Disposal To	Facility	State	Name of unit	Address of unit	Contact of unit	Email of unit
1	29-06-2021	5.1 Used or spent oil	spent oil	2.002	MT	Recycler		Maharashtra	m/s plus lubricant	Gut no -228 (P1) S.no 48 HIssa No 43 Village abitghar , tal wada , Dist palghar	9867421136	sahil@pluslubricant .in
	Number o	of Container	'5	BYLIE.	Physi	ical Form	Votes H	Special I	Handling I	nstruction	s And Additio	nal Information
		10			L	iquid		Use appropriate PPEs and Foam type extinguisher in case of			her in case of fire	

8

M/s. INNOVASSYNTH TECHNOLOGIES (INDIA) LTD Near Mumbai-Pune Read, Khopoli, Dist-Raigad-410 203

Balagi'

Manifest For Hazardous And Other Waste

Submitted Date: 24-09-2021

Apply as Generator

Unit Name	Plant Name	Submit To	
Innovassynth Technologies (I) Ltd	Innovassynth Technologies (I) Ltd	SRO-Raigad I	

Sender name and mailing address (including phone no. and email.)						
Sender Name	Sender Address	Sender Mobile No.	Sender Email			
Innovassynth Technologies (I) Ltd.	Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad 410203	9405252557	env@innovassynth.com			

Sender authorisation No	Manifest Document No	Membership No (If any)
Format: 1.0//UAN No. 0000104447/CO-2106000958	MPCB-HW_MANIFEST-0000140679	NA

Transporter's name and address (including phone no. and email.)						
ransporter Name	Vehicle No.	Transporter Address	Transporter Mobile No.	Transporter Email		
M/s. Mercury Sales, Shop No. 45, Village Paiki, Shil, Dist. Thane	MH-04/CU-0526	Shop no. 45, Hissa No.1, Village Paiki Shil Dist. Thane	9820825322	merscrap_2006@gmail.com		

	Waste Disposal Details											
Sr No	Date	Waste Category	Waste Name	Waste QTY	Waste Unit	Waste Disposal To	Facility -	State	Name of unit	Address of unit	Contact of unit	Email of unit
1	24-09-2021	20.2 Spent solvents	Mixed Solvents	12.412	MT	Recycler		Maharashtra	M/s. Om Chemicals	Plot No. E-9, MIDC Lote Parshuram, Tal- Khed, Dist- Ratnagiri, PIN- 415722	9890779689	omchemicalslote@gmail.com
10 10	Number	of Containe	rs		Phys	ical Form	37272	Sp	ecial Handl	ing Instructi	ons And Addi	tional Information
		62				iquid				Use app	ropriate PPEs.	

Annexure VII Green Belt and Plantation Photographs

Green belt and plantation detaills

Total Area - 244872.00 sq.m

Total Green Belt Area – 80808 sq.m

Plantation of Various trees on the occasion of World Environment Day 2021.

Species-

- 1. Guava.
- 2. Chickoo
- 3. Jackfruit
- 4. Amalaka
- 5. Sonchapha
- 6. Mango.

Survival of plants Photographs-

Annexure VIII ESR Activity

	Approx.		Distance of the work	
Particulars	Amount	Brief Description of project	from Project Area	Status
	Rs. Lacs			
Multiutility		Multi utility toilet block construction for municipal	1.7 km	
Toilet Block	25.52	council in the town which will be used by people		Completed
for Municipal	25.52	in the market and commuters on the highway.		
Council		This block will be maintained by municipal council.		
Toilet Block at	9.4	Toilet block for villagers of Mulgaon which is in	0.2 Km	Completed
Mulgaon		the vicinity of factory.		
Water Purifier		Water purifier with cooler to be installed in	2.6 Km	Completed
& Cooler for	2.5	Municipal hospital premises which will be used by		
Municipal	3.5	patients coming from rural areas. Also, it will be		
Hospital		used by people in the surrounding market area.		
Faecal Sludge		Currently there is no treatment facility for the	3.5 Km	Completed
Treatment		faecal sludge collected by Municipal Council. As		
Plant 30KL		requested by Municipal Council, we propose to		
(FSTP) for	28	install FSTP which will treat the faecal sludge		
Municipal	28	collected from town.		
Council				
Total	66.42			

Annexure IX DG Emission monitoring report GOLDFIN

QCI-NABET accredited EIA consultant, ISO 9001:2015 Certified Company Laboratory Gazetted by MoEF & Certified by ISO 45001 - 2018 One-stop Environmental Solution...
[Formerly Waste Encare India Pvt. Ltd.]

Plot No. A - 288, Road No. 16 Z, Opp. Agriculture Office Bus-stop, Thane Industrial Area, MIDC (Wagle Estate) Thane (West) - 400 604. Maharashtra, India. • Tel.: 91-022-2580 1546 / 9920093829 / 7208579136

Email: mktg@goldfinchengg.com, accounts@goldfinchengg.com, lab@goldfinchengg.com / Website: www.goldfinchengg.com

QF/LA/10-B

Report Ref. No.: GFL/AS/R/21/09-151

Report Date: 08.10.2021

ANALYSIS REPORT FOR STACK EMISSION MONITORING

Name of the Industry:	M/s Innovassynth Technologies (India) Ltd. Khopoli.				
Date of Sampling :	28.09.2021	Sample Description :	Stack		
Date of Receipt of Sample:	01.10.2021	Sample Collected by :	Laboratory		
Date of Analysis Started :	02.10.2021	Date of Analysis Completed :	08.10.2021		

Sample Code No.	GFL/AS/R/21/09-151	Limits	Units	Test Method
Stack Attached To	DG Stack 1000 KVA Beside Boiler House			
Stack Diameter	0.25		meter	IS 11255
Stack Height	6.3		meter	(Part-3):2008
Fuel used & Consumption	Diesel 180		kg/hr	Reaffirmed 2018
Velocity of flue gases	8.07		m/s	
Temperature of flue Gases	163		°C	
Flow/volume of flue Gases	1425.3		m³/Hr	
Particulate Matter	91.95	150	mg/Nm ³	IS 11255 (Part I):1985 Reaffirmed - 2014
Sulphur Di Oxide Content	0.27	88.8	Kg/Day	IS 11255 (Part 2):1985 Reaffirmed - 2014

Sampling carried out using
Stack Monitoring Kit
ID No. GOLDFINCH/INST-STACK/45,46,47
Calibrated on -23.10.2020
Calibration Due on - 22.10.2021

For Goldfinch Engineering Systems Private Limited

Analyzed By

Verified By

Approved By

Ukella

Govt. Analyst

Lab-In-charge

Director-Lab/Govt. Analyst

Page 1 of 1

PAN No. : AAACW1593P UAN No. : MH33B0010167

GSTIN: 27AAACW1593P1ZP

PF No. : MH/THA/37337 ESIC No. : 34-00-009299-000-0908

Goldfinch Engineering Systems™ Private Limited

QCI-NABET accredited EIA consultant, ISO 9001:2015 Certified Company Laboratory Gazetted by MoEF & Certified by ISO 45001 - 2018

Plot No. A - 288, Road No. 16 Z, Opp. Agriculture Office Bus-stop, Thane Industrial Area, MIDC (Wagle Estate) Thane (West) - 400 604. Maharashtra, India. • Tel.: 91-022-2580 1546 / 9920093829 / 7208579136

Email: mktg@goldfinchengg.com, accounts@goldfinchengg.com, lab@goldfinchengg.com / Website: www.goldfinchengg.com

QF/LA/10-B

Report Ref. No.: GFL/AS/R/21/09-152

Report Date: 08.10.2021

ANALYSIS REPORT FOR STACK EMISSION MONITORING

Name of the Industry:	M/s Innovassynth Technologies (India) Ltd. Khopoli.			
Date of Sampling :	29.09.2021	Sample Description :	Stack	
Date of Receipt of Sample :	01.10.2021	Sample Collected by :	Laboratory	
Date of Analysis Started :	02.10.2021	Date of Analysis Completed :	08.10.2021	

Sample Code No.	GFL/AS/R/21/09-152	Limits	Units	Test Method
Stack Attached To	DG Stack 1010 KVA (MPP Plant)			
Stack Diameter	0.406		meter	
Stack Height	30		meter	IS 11255
Fuel used & Consumption	Diesel 180		kg/hr	(Part-3):2008 Reaffirmed 2018
Velocity of flue gases	8.58		m/s	Trodiminod 2010
Temperature of flue Gases	165		°C	
Flow/volume of flue Gases	3996.7		m³/Hr	
Particulate Matter	53.27	150	mg/Nm ³	IS-11255 (Part-1):1985, Reaffirmed-2014
Sulphur Di Oxide Content	0.76	88.8	Kg/Day	IS-11255 (Part-2):1985 Reaffirmed-2014

Sampling carried out using Stack Monitoring Kit ID No. GOLDFINCH/INST-STACK/45,46,47 Calibrated on -23.10.2020 Calibration Due on - 22.10.2021

For Goldfinch Engineering Systems Private Limited

Analyzed By

Verified By

Approved By

Govt. Analyst

Lab-In-charge

Director-Lab/Govt. Analyst

Page 1 of 1

PAN No. : AAACW1593P UAN No. : MH33B0010167

GSTIN: 27AAACW1593P1ZP

PF No. : MH/THA/37337 ESIC No. : 34-00-009299-000-0908

Goldfinch Engineering Systems™ Private Limited

QCI-NABET accredited EIA consultant, ISO 9001:2015 Certified Company Laboratory Gazetted by MoEF & Certified by ISO 45001 - 2018

Plot No. A - 288, Road No. 16 Z, Opp. Agriculture Office Bus-stop, Thane Industrial Area, MIDC (Wagle Estate) Thane (West) - 400 604. Maharashtra, India. • Tel.: 91-022-2580 1546 / 9920093829 / 7208579136

Email: mktg@goldfinchengg.com, accounts@goldfinchengg.com, lab@goldfinchengg.com / Website: www.goldfinchengg.com

QF/LA/10-B

Report Ref. No.: GFL/AS/R/21/09-153

Report Date: 08.10.2021

ANALYSIS REPORT FOR STACK EMISSION MONITORING

Name of the Industry:	M/s Innovassynth Technologies (India) Ltd. Khopoli.				
Date of Sampling :	28.09.2021	Sample Description :	Stack		
Date of Receipt of Sample :	01.10.2021	Sample Collected by :	Laboratory		
Date of Analysis Started :	02.10.2021	Date of Analysis Completed :	08.10.2021		

Sample Code No.	GFL/AS/R/21/09-153	Limits	Units	Test Method
Stack Attached To	DG Stack 500 KVA MPP Plant			
Stack Diameter	0.254		meter	
Stack Height	6.3		meter	IS 11255
Fuel used & Consumption	Diesel 90		kg/hr	(Part-3):2008 Reaffirmed 2018
Velocity of flue gases	7.93		m/s	Reallillieu 2016
Temperature of flue Gases	148		°C	II.
Flow/volume of flue Gases	1445.7		m³/Hr	
Particulate Matter	94.00	150	mg/Nm ³	IS-11255 (Part-1):1985, Reaffirmed-2014
Sulphur Di Oxide Content	ND	45.6	Kg/Day	IS-11255 (Part-2):1985 Reaffirmed-2014

Sampling carried out using Stack Monitoring Kit ID No. GOLDFINCH/INST-STACK/45,46,47 Calibrated on -23.10.2020 Calibration Due on - 22.10.2021

For Goldfinch Engineering Systems Private Limited

Analyzed By

Verified By

Approved By

Hecenar

Govt. Analyst

Lab-In-charge

Director-Lab/Govt. Analyst

Page 1 of 1

PAN No. : AAACW1593P UAN No. : MH33B0010167

GSTIN: 27AAACW1593P1ZP

PF No. : MH/THA/37337 ESIC No. : 34-00-009299-000-0908

Annexure X

Fire Fighting System Details

A) Fire Pump House No. 01: Non-BASF

1. Main Hydrant Pump : 01 No

Make	- Mather Greaves	Туре	•
Head	- meter	Capacity	- 1000 GPM
Speed	- 2300 rpm		

Motor details:-

Make	-	Frame -
Rating	- 105 HP	Voltage -
Current	- A	Speed - rpm

2. Diesel Pump : 01 No.

Make	- Kirloskar	Туре	- 4R 1040 NB
Head	- 80 meter	Capacity	- 137 m³/hr
Speed	- 2300 rpm		

Motor details:-

Make	-	Frame -
Rating	- 69 HP	Voltage -
Current	- A	Speed - rpm

3. Jockey Pump : 01 No.

Make	- Kirloskar	Туре	- DB32/26	
Head	- 70 meter	Capacity	- 3.05 LPS	
Speed	- 2900 rpm			

Motor details:-

Make	-	Frame -
Rating	- 12.5 HP	Voltage -
Current	- A	Speed - rpm

4. Fire hydrant tank capacity $: 200 \text{ m}^3$

B) Fire Pump House No. 02: BASF

1. Main Hydrant Pump : 01 No.

Make	- Kirloskar	Туре	- DB100/26	
Head	- 70 meter	Capacity	- 47.15 LPS	
Speed	- 2900 rpm			

Motor details:-

Make	- KEC	Frame - KH160M
Rating	- 100 HP	Voltage - 415.0 V
Current	- A	Speed - rpm

2. Diesel Pump : 01 No.

Make	- Kirloskar	Туре	- 4R 1040 NB
Head	- 80 meter.	Capacity	- 137 m³/hr
Speed	- 2900 rpm		

Motor details:-

Make	- KEC	Frame	- KH160M
Rating	- 69 HP	Voltage	- 415.0 V
Current	- A	Speed	- rpm

3. Jockey Pump : 01 No.

Make	- Kirloskar	Туре	- DB 32/26	
Head	- 70 meter	Capacity	- 3.05 LPS	
Speed	- 2900 rpm			

Motor details:-

Make	- KEC	Frame - KH160M
Rating	- 12.5 HP	Voltage - 415.0 V
Current	- A	Speed - rpm

4. Fire hydrant tank capacity $:500 \text{ m}^3$

Total Single Hydrant Post : 99

Hydrant hose pipe : 198

Total Nos. of Fire Extinguishers: 560

DCP : 180

DP : 30

CO₂ : 150

ABC : 100

Mechanical Foam : 100

AFFF Foam : 150 liters.

SCBA set : 15 Nos.

聞のとはなると

HEALTH CHECK UP DONE ON

BY

Dr. Anita S. Tarlekar M.D. (Med) A.F.I.H.

CERTIFYING SURGEON

Shushrusha Occupational Health entre Research

ADD Plot No 22-A, Phase-III, Palm Beach Road, Sec-06, Nerul, Navi Mumbai-400 706. Tel No : 9322297834, 9833327293. Email ID : shushrushaoccuhealth@gmail.com

(See Rule 18(7) and schedules II, III, IV, VI, VIII, X, XI, XIII, XIV, XV, XVII, XVIII and XX Rule 114 Innovassynth Technologies Limited HEALTH REGISTER

(In respect of person employed in occupations declared to be dangerous operations under section 87).

Name Of Certifying Surgeon (a): Dr. Anita Tarlekar(M.D.,AFIN)

Certifying Surgeon

From:_	22-12-20	To 29-12-2021
From:		To

Sri No	Employee No	Name of Worker	Sex		Employme nt Of present work	Date Of leaving or transfer to other work	Reason for leaving transfer or discharge	Nature of job or occupation		Dates Of medical Examination by certifying surgeon and result of medical examination	Result Of Medical Examination Physician Remark	If suspended from work state period of suspension with detailed reason		If certificate of unfitness or suspension issued to worker	Signature with date certifying Surgeon
1		MR. SADHURAM SHID	Male	30				FITTER		30-12-20	Fit For Job				
2		MR. DEENABANDHU PODYLY	Male	34				FITTER		30-12-20	Fit For Job			 	
3		MR. RAJESH JAISWAL	Male	35			AMA OMORPHOMIA METOURIA SPARMEN SPANIS	WELDER	, , d <u>, </u>	30-12-20	Fit For Job			AL COMPANYON IN NAMES AND ASSOCIATED SPRANT PROPERTY AND	- Charles and the second
4	and structures about the second structures of	MR. ABHISHEK DESPHANDE	Male	26					AND A STATE AND AND AND AND THE PARTY OF	24-12-20	Fit For Job	Marie and the street of the st	AND STREET, ST		A Company of the Comp
5		MR. MALI P. MARUTT	Male	27				PROD. OFFICER	,	29-12-20	Fit For Job	II. ali novi arvoma visiona armo pro Mala Mala Adala A			
6	-	MR. RAHUL MALVADE	Male	33				ENGINEER		23-12-20	Fit For Job				No.
7	1042	MR. SHASHIKANT K. PATIL	Male	56				Principal Scientist		22-12-20	F库 For Job				
8	1070	MR. SURANGAREV. JAYRAJ	Male	46		:		SR. MANAGER		24-12-23	Fit For Job	TO 60' 10' 10' 10' 10' 10' 10' 10' 10' 10' 1		-	San
9	1072	MR. NAMDEV B. SAWANT	Male	47				DY, MANAGER		24-12-20	Fit For Job	TO ALLE ON THE THE THE PROPERTY MANAGEMENT AND ADDRESS.			Washington Commencer
10	1076	MR. RAJENDRA D. GAIKWAD	Male	53				DY. MANAGER	***************************************	24-12-20	Fit For Job				

डॉ. अनिता तारळेकर कारखाने अधिनियम १९४८ च्या कलम १० (२) प्रमाणे रायगड जिल्ह्याकरिता ०२ डिसेंवर २०२० पासून ०१ डिसेंबर २०२२ पर्यंत प्राधिकृत प्रमाणक शत्य विकीत्सक क्र.ACS25AT/2016

(See Rule 18(7) and schedules II, III, IV, VI, VIII, X, XI, XIII, XIV, XV, XVIII, XVIII and XX Rule 114 Innovassynth Technologies Limited

HEALTH REGISTER

(Tn respect of person employed in occupations declared of the preparation and employed for \$3).

Signature with date certifying Surgeon	esantituu to	resume duty on with Signature of	If suspended from work state period of suspension with detailed reason	Result Of Medical Examination Physician Remark	Oetee Of medical medical your promination by grighing currens and medical colors.	pke broduct	กดนิธตุมววดาด		Date Of leaving or transfer to other work	Employme nt Of present	X95	тэнтоМ То эт
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	o'l'		From:					DrijyjthaO		
		DST	10 29-12-2		nedo suonegnas a -si-ss ;mor∃	arien en ine		-				Name Of Certifying

Surgeon date certifying Signature with	If certificate or worker worker	Certified fill to resume duly on with Signature of Certifying Surgeon	behageus II wow anoth to boised stets to colegealeus definitied tiosest	Result Of Medical Examination Physician Remark Gemark	Dates Of medical medical braining on by Certifying certifying sud sudgeon and result of medical on patients of patients	nave product Parenal or Panalect		discharge transfer or or discharge Reason	leaving or transfer	Employine nt Of present work		¥9≷	Name of Worker		331
				dot 가야국,회국	CZ-ZI-ÞZ		d√A.				ΔÞ	əlsM	AM9AH2 AAGNEGRA	99	337
				dot rc귀 하다	59-15-50		4.U .A2				6 b	Alale	MR. VIPUL S. RAWA	ζÞ	333
				나는 다. 그야	CZ-ZI-bZ		dΛV				₽£_	Male	MK, NAGAPPA:SUNKESULA	48	334
				doC गरन शन	53-15-5 0	nder vonner sentra sind sentra sentra sentra se	CHIEF OPFERATING OFFICER				21	Male	MB" SAMJEEN SAXENA	6+	332
				doL 1cF 카리	75-7 7 -67	***************************************	CEO	100 T II 100	·····		SÞ	əleM	MR. HARDIK JOSHIPURA	0S	988
·				dot noil die	5 d-1 Σ-50		TNAMAÐANAM TANIAET				77	Femai e	MS. DIKSHITA A. KUDALKAR	1559	755
		TOTAL STATE OF THE		dot 10년 화크	72-72		ЭЭИІАЯТ				77	Femal e	∄SNAAA'Y LIANGAWS ,2M	799	855
				doC 1c귀 최구	73-17-50		TRAINEE	ساخلسا سانسار مهرب ورمهورون			77	ЭlsМ	MR. AKASH B. KHANDAGALE	2 229	688
				라는 무어노 Job	73-17-50		33NIART				52	Femal e	MS. ARTI M. NIKAM	8229	340
Jahran 15	<u> ५</u> कळग्रा	ार्गनार हि		····································	···										·

(९) ०९ मिलक एक ४४९९ मणनीवीह निष्ठप्रक ०५०९ प्रमिद्धी १० स्थिकोक्तिकी इत्तमप्तर गिमप्त

(See Rule 18(7) and schedules II, III, IV, VI, VIII, X, XI, XIII, XV, XVII, XVIII and XX Rule 114 Innovassynth Technologies Limited

HEALTH REGISTER

(In respect of person employed in accupations declared to be dangerous operations under section 87).

Mame Of Certifying Surgeon (a): Dr. Anita Tarlekar(M.D., AFIH)

From: 22-12-20 To 29-12-2021

From: To 39-12-2021

From: To 39-12-2021

				dot गल्न ग्रंन	2 3- 15-50	-	TRAINEE				1 77	Male	МК. РЯАТІК ТÜРЕ	₽ ∠06	5 4 5 2
				do£ 109 3i9	0 Z- 21- 5 2		NURSING STATF				77	Femal 6	MS, SONAM E. PATIL	££02	∠ 9 1 ⁄ε
			**************************************	dot 10न गीन	0 7-71- 5 0		иоттачеств		<u></u>		23	Femal e	MS. ASHWINI B. KARVE	1802	∠ St>E
	Makes (collection or control of the collection o			Fit For Job	53-15-5 9		HR, MANAGER				<u>59</u>	SigM	MR, ANIL G. BÀHUGUNI	₽ 207	2 11 2
				Fit For Job	Şd-1∑-Σij		TRAINEE			erenii eren arab aaren eren ar aren ar	<u>23</u>	əlsM	TAWƏAHƏ TICHƏA . AM	T959	343 0
				doC 16귀 1취	75-15-50		ENGINEER				97	əlsM	MR. VINAYAK P. SUTAR	0999	9 Z I E
The state of the s				dot 10년 11년	07-21-⊅ 2		OFFICER				23	əleM	VADAY UIHDAZ . AM	6889	341 6
Signsture with privitives etch mosyne	esenfilnu to	Certified IIIt to resume duly o with Signature Certifying Surgeon	bebreetis II with period of state period active active belisted with nosset	Result Of Medical Examination Physician Remark	To test Off offices of the control o			Reason for transfer leaving discharge	leaving or transfer to other	Employme present work		хəs	Name of Worker	ok əəkoldu;	E HS

र्फळप्रा तानिस हैं

१९) ०१ मालक एउ ८४ १ मार्गिनिस नाष्ट्रमक १०१० प्रमंत्री २० तिर्मकाक्ष्मकी इम्प्राप् जिस्स काणम्स प्रकृषिस त्रेष्म १९०४ प्रकृषि । १०८१.१४८८८८५५ कालकिया स्थाप

Annexure XII Energy Saving Report

	Energy Saving Report 2019-20									
S.No.	Work description	Area	Equipment	Previous consumption KWH / year	After implementation consumption KWH / year	Energy saved KWH / year				
1	Replacement of Coventional vessel lamp fitting by LED fittings	All plant	Reactor	10800	1980	8820				
2	Use of steam instead of Hot water for dryer. Hot water pumps stopped	MPP	D - 301 / 1301	40800	0	40800				

	Energy Saving Report 2020-21									
S.No.	Work description	Area	Equipment	Previous consumption KWH / year	After implementation consumption KWH / year	Energy saved KWH / year				
1	Replacement of 25Hp motor of PP1 Cooling water pump with 12.5Hp motor	PP1	Pump	141847.2	70923.6	70923.6				

Form 4

See rules 6(5),13(8),16(6) and 20(2) of Hazardous and other wastes 2016

FORM FOR FILING ANNUAL RETURNS

[To be submitted to state pollution control board/pollution control committee by 30th June of every year for the preceeding period April to march]

Unique Application Number:Submitted On:MPCB-HW ANNUAL RETURN-000002327305-07-2021

Submitted for Year: April 2020 to March 2021

1. Name of the generator/operator of facility Address of the unit/facility

Innovassynth Technologies (I) Ltd. Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad

410203

1b. Authorization Number Date of issue Date of validity of consent

Format1.0/CAC/UAN No.0000092277/CO-2011000999 Nov 17, 2020 Aug 31, 2023

2. Name of the authorised person Full address of authorised person

Mr. Sanjay Chowrasia Survey No.:9-2, Wasrang 34-36, Khopoli, Tal- Khalapur, Raigad

410203

Telephone Fax Email

9820026298 02192260100 schowrasia@innovassynth.com

3. Production during the year (product wise), wherever applicable

Product Type *	Product Name *	Consented Quantity	Actual Quantity	UOM
Chemical ,Petrochemical &Electrochemical	Substituted Triazine Derivative / CG 29-1127 / 4-[4,6-bis(2,4-dimethyl phenyl) -1,3,5-triazine-2yl]-1,3 Benzenediol	824055.6000	443203.000	Kg/Annum
Chemical ,Petrochemical &Electrochemical	4-Methyl -2-Thiomethyl Pyrimidine	480.0000	1.005	Kg/Annum
Chemical ,Petrochemical &Electrochemical	4-HEXYL RESORCINOL	24000.0000	1024.620	Kg/Annum
Chemical ,Petrochemical &Electrochemical	p-Nitro Phenyl Phosphate – Disodium Salt Hexahydrate OR PNPP DiNa	2400.0000	18.700	Kg/Annum
Chemical ,Petrochemical &Electrochemical	p-Nitro Phenyl Phosphate – Ditris Salt OR PNPP Ditris	120.0000	60.560	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-DMT-2-OTBDMS-RNA PHOSPHORAMITE AND DERIVATIVES	62.7270	21.600	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-O-Dimethoxytrityl 2-OTBDMS-N2-Isobutyryl Guanosine (PNS)	63.5400	0.289	Kg/Annum
Chemical ,Petrochemical &Electrochemical	2,2 BIS [-(2INDENYL)BIPHENYL]ZICRONIUM(IV) CHLORIDE	600.0000	58.024	Kg/Annum
Chemical ,Petrochemical &Electrochemical	4,4DIMETHOXYTRITYL CHLORIDE (DMT-CL)	15000.0000	14461.760	Kg/Annum
Chemical ,Petrochemical &Electrochemical	1-CYANO CYCLOBUTANE-1,2-DICARBOXYLIC ACID DIMETHYL EASTER / TRANSDIACID	3072.0000	54.180	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT cEt N-isobutryl Guanosine-3-OCEPA (Amidite)	18.2400	0.026	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT cEt N-Benzoyl Cytidine-3-OCEPA (Amidite)	18.2400	2.924	Kg/Annum

	- 00117 - F. II. II. (010)			
Chemical ,Petrochemical &Electrochemical	5-ODMT cEt Uridine (PNS)	18.2400	0.014	Kg/Annum
Chemical ,Petrochemical &Electrochemical	NAP SUGAR	450.0000	197.270	Kg/Annum
Chemical ,Petrochemical &Electrochemical	Aldol Sugar	150.0000	143.070	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-Tac deoxy Cytidine 3-CEPA (Amidite)	30.0000	0.202	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT-2-OMe N-Benzoyl Adenosine-3-OCEPA (Amidite)	38.0000	0.006	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT-2-OMe N-isobutryl Guanosine (PNS)	38.0000	0.094	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT-2-OMe N-isobutryl Guanosine-3-OCEPA (Amidite)	38.0000	0.014	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT-2-OMe N-Acetyl Cytidine (PNS)	38.0000	0.058	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT-2-OMe N-Acetyl Cytidine-3-OCEPA (Amidite)	38.0000	0.005	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT-2-OMe Uridine-3-OCEPA (Amidite)	38.0000	0.006	Kg/Annum
Chemical ,Petrochemical &Electrochemical	ANETHOL	180000.0000	113924.650	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5'-ODMT-DEOXYNUCLEOSIDES, PHOSPHORAMIDITES AND SUCCINATE SALTS	120.0000	53.200	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-Benzoyl deoxy Adenosine-3-OCEPA (Amidite)	120.0000	0.470	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-isobutryl deoxy Guanosine (PNS)	120.0000	65.240	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-isobutryl deoxy Guanosine-3-OCEPA (Amidite)	120.0000	0.698	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-dmf deoxy Guanosine-3-OCEPA (Amidite)	120.0000	0.115	Kg/Annum
Chemical ,Petrochemical &Electrochemical	N-Benzoyl deoxy Cytidine (Diol)	3.2430	0.750	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-Benzoyl deoxy Cytidine (PNS)	120.0000	0.750	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-Acetyl deoxy Cytidine (PNS)	120.0000	120.000	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-Acetyl deoxy Cytidine-3-OCEPA (Amidite)	120.0000	120.000	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT deoxy Thymidine (PNS)	120.0000	0.920	Kg/Annum
Chemical ,Petrochemical &Electrochemical	deoxy Cytidine Monophosphate	3.2430	0.006	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT N-isobutryl deoxy Guanosine (PNS) (Pharma Grade)	3.2430	0.800	Kg/Annum
Chemical ,Petrochemical &Electrochemical	3-O-Phthalimido-thymidine (dT)	3.2430	0.245	Kg/Annum
Chemical ,Petrochemical &Electrochemical	3-O-Phthalimido-2-Deoxy Cytidine	3.2430	0.212	Kg/Annum
Chemical ,Petrochemical &Electrochemical	3-O-Phthalimido-2-Deoxy Adenosine	3.2430	0.296	Kg/Annum

Chemical ,Petrochemical &Electrochemical	3-O-Phthalimido-2-Deoxy Guanosine	3.2430	0.142	Kg/Annum
Chemical ,Petrochemical &Electrochemical	DMT-LNA-NUCLEOSIDES & PHOSPHORAMIDITES	87.6920	0.127	Kg/Annum
Chemical ,Petrochemical &Electrochemical	LNA N-Benzoyl Adenosine (Diol)	3.0000	0.527	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT LNA N-Benzoyl 5-Methyl Cytidine (PNS)	87.6920	0.573	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT LNA N-Benzoyl 5-Methyl Cytidine-3-O-CEPA (Amidite)	87.6920	0.273	Kg/Annum
Chemical ,Petrochemical &Electrochemical	LNA Thymidine (Diol)	3.0000	0.985	Kg/Annum
Chemical ,Petrochemical &Electrochemical	3-ODMT LNA N-Benzoyl 5-Methyl Cytidine-5-O-CEPA (Reverse Amidite)	3.0000	0.012	Kg/Annum
Chemical ,Petrochemical &Electrochemical	3-ODMT LNA Thymidine-5-O-CEPA (Reverse Amidite)	3.0000	0.012	Kg/Annum
Chemical ,Petrochemical &Electrochemical	NOOTKATONE	5600.4000	4068.320	Kg/Annum
Chemical ,Petrochemical &Electrochemical	R&D Products (Intermidiate chemicals)	760.0800	246.918	Kg/Annum
Chemical ,Petrochemical &Electrochemical	3G Metallocene	760.0800	0.002	Kg/Annum
Chemical ,Petrochemical &Electrochemical	4-Tert-butylphenoxyAceticAcid	480.0000	201.550	Kg/Annum
Chemical ,Petrochemical &Electrochemical	2,2 BIS [-(2INDENYL)BIPHENYL]ZICRONIUM(IV) CHLORIDE ON SILICA SUPPORT	1200.0000	3.880	Kg/Annum
Chemical ,Petrochemical &Electrochemical	4-(methylamino)pentan-2-ol dibenzoate (AB)	12000.0000	2948.510	Kg/Annum
Chemical ,Petrochemical &Electrochemical	9,9-bis(methoxymethyl)fluorene (FLU)	12000.0000	548.440	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-ODMT-N6-Bz-2-Fluoro Adenosine (PNS)	4.8000	4.800	Kg/Annum
Chemical ,Petrochemical &Electrochemical	4-Chloro-4'-hydroxybenzophenone or CHBP or 4-CHBP	86503.2000	4240.790	Kg/Annum
Chemical ,Petrochemical &Electrochemical	GalNAc-2-O-pentanoic Acid OR GalNAc Acetoxy Pentanoic acid	66.0000	40.328	Kg/Annum
Chemical ,Petrochemical &Electrochemical	GalNAc Benzyloxy Pentanoic acid	66.0000	38.790	Kg/Annum
Chemical ,Petrochemical &Electrochemical	Santalol	20004.0000	14536.335	Kg/Annum
Chemical ,Petrochemical &Electrochemical	4-(2-Chloroethyl) Morpholine Hydrochloride (CEM HCl)	20400.0000	12099.750	Kg/Annum
Chemical ,Petrochemical &Electrochemical	Biocide 950	9120.0000	168.200	Kg/Annum
Chemical ,Petrochemical &Electrochemical	2-Methyl-4-isothiazolin-3-one (MIT)	480.0000	12.606	Kg/Annum
Chemical ,Petrochemical &Electrochemical	Biocide 300	9120.0000	349.560	Kg/Annum
Chemical ,Petrochemical &Electrochemical	5-Chloro-2-Methyl-4-isothiazolin-3-one : 2-Methyl-4-isothiazolin-3-one (CMIT/MIT) (3:1)	480.0000	57.090	Kg/Annum
Chemical ,Petrochemical &Electrochemical	Non-hazardous synthetic compounds for research analysis and data OR (Bis Benzyl Ribo Sugar)	360.0000	149.170	Kg/Annum

120

PART A: To be filled by hazardous waste generators

1. Total Quantity of waste generated category wise

Type of hazardous waste	Wate Name	Consented Quantity	Quantity	UOM
5.1 Used or spent oil	Spent Oil	2.000	1.02	MTA
20.3 Distillation residues	Distillation Residue	424.700	61.582	MTA
37.3 Concentration or evaporation residues	MEE Solid waste	483.200	84	MTA
35.3 Chemical sludge from waste water treatment	ETP Sludge	246.000	32.08	MTA
33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	Empty Waste bags	70.000	15.49	MTA
38.2 Spent acid	Spent Hydrochloric Acid	1189.200	298.75	MTA
38.2 Spent acid	Spent Sulphuric Acid	1428.000	171.70	MTA
20.2 Spent solvents	Mixed Solvent	2773.200	374.39	MTA
Other Hazardous Waste	By Product Aqueous AICI3 Solution	12382.800	5406.41	MTA

2. Quantity dispatched category wise.

Type of Waste 5.1 Used or spent oil	Quantity of waste 1.02	UOM MTA	Dispatched to Recycler or Actual user	Facility Name Plus Lubricants
20.3 Distillation residues	61.582	MTA	Disposal Facility	MWML
37.3 Concentration or evaporation residues	84	MTA	Disposal Facility	MWML
35.3 Chemical sludge from waste water treatment	32.08	MTA	Disposal Facility	MWML
33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	15.49	МТА	Disposal Facility	MWML
38.2 Spent acid	298.75	MTA	Recycler or Actual user	Eighteen Acid
38.2 Spent acid	171.70	MTA	Recycler or Actual user	Thakkar inorganic Pvt Ltd
20.2 Spent solvents	374.39	MTA	Recycler or Actual user	Shree Samarth Engineers
Other Hazardous Waste	5406.41	MTA	Recycler or Actual user	CETPs

3. Quantity Utilised in-house, If any

Type of Waste	Name of Waste	Quantity of Waste	UOM
	NA	0	KL/Anum

4. Quantity in storage at the end of the year

Type of Waste	Name of Waste	Quantity of Waste	UOM
	NA	0	KL/Anum

PART B: To be filled bt Treatment, storage, and disposal facility operators

1.Total Quantity receivedUOMState NameNAKL/AnumOther

2. Quantity in stock at the beginning of the year UOM

NA KL/Anum

3. Quantity treated UOM

NA KL/Anum

4. Quantity disposed in landfills as such and after treatment

UOM Direct landfilling NA KL/Anum Landfill after treatment **UOM** NA KL/Anum 5. Quantity incinerated (if applicable) **UOM** KL/Anum 6. Quantiry processed other than specified above UOM KL/Anum **UOM** 7. Quantity in storage at the end of the year. KL/Anum

PART C: To be filled by recyclers or co-processors or other users

1. Quantity of waste received during the year

Waste Name/Category	Country Name	State Name	Quantity of waste received from domestic sources	Quantity of waste imported(If any)	Units
NA	India	Maharashtra	NA	NA	KL/Anum

2. Quantity in stock at the beginning of the year

Waste Name/Category	Quantity	UOM
NA	NA	KL/Anum

3. Quantity of waste recycled or co-procesed or used

Name of Waste	Type of Waste	Quantity	UOM
NA	NA	NA	KL/Anum

4. Quantity of products dispatched (wherever applicable)

Name of product	Quantity	иом
NA	NA	KL/Anum

5. Total quantity of waste generated

Waste name/category	quantity	UOM
NA	NA	KL/Anum

6. Total quantity of waste disposed

Waste name/category	quantity	UOM
NA	NA	KL/Anum

7. Total quantity of waste re-exported (If Applicable)

Waste name/category	quantity	UOM
NA	NA	KL/Anum

8. Quantity in storage at the end of the year

Waste name/category	quantity	UOM
NA	NA	KL/Anum

Personal Details

Place	Date	Designation
Khopoli	2021-07-05	AVP-EHS

Maharashtra Pollution Control Board

महाराष्ट्र प्रदूषण नियंत्रण मंडळ

FORM V

(See Rule 14)

Environmental Audit Report for the financial Year ending the 31st March 2021

Unique Application Number

MPCB-ENVIRONMENT_STATEMENT-0000035962

Submitted Date

21-09-2021

PART A

Company Information

Company Name Application UAN number

Innovassynth Technologies (I) LTD 92277

Address

Old Mumbai - Pune Road revenue survey No-9-24, Wasarang , 34-36, Chichwali At -Khopoli , Tal Khalapur , DIs - Raigad

Plot noTalukaVillageSurvey No-9-24, Wasrang , 34-36KhalapurChichwaliCapital Investment (In lakhs)ScaleCity10813LSIKhopoli

PincodePerson NameDesignation410203Sanjay ChowrasiaAVP-EHS

Telephone Number Fax Number Email

2192260100 schowrasia@innovassynth.com

Region Industry Category Industry Type

SRO-Raigad I Red R22 Organic Chemicals manufacturing

Last Environmental statement Consent Number Consent Issue Date

submitted online

yes Format1.0/CAC-Cell/UAN-No-0000092277/CO-2011000999 17.11.2020

Consent Valid Upto Establishment Year Date of last environment statement

submitted

31.08.2023 2001 Sep 16 2020 12:00:00:000AM

Industry Category Primary (STC Code) & Secondary (STC

Code)

Product Information

Product Name	Consent Quantity	Actual Quantity	UOM
Substituted Triazine Derivative / CG 29-1127 / 4-[4,6- bis(2,4-dimethyl phenyl) -1,3,5-triazine-2yl]-1,3 Benzenediol	824055.600	443203.000	Kg/Annum
4-Methyl –2-Thiomethyl Pyrimidine	480.000	1.005	Kg/Annum
4-HEXYL RESORCINOL	24000.000	1024.620	Kg/Annum
p-Nitro Phenyl Phosphate – Disodium Salt Hexahydrate OR PNPP DiNa	2400.000	18.700	Kg/Annum
p-Nitro Phenyl Phosphate – Ditris Salt OR PNPP Ditris	120.0000	60.560	Kg/Annum

5-DMT-2-OTBDMS-RNA PHOSPHORAMITE AND DERIVATIVES	62.7270	21.600	Kg/Annum
5-O-Dimethoxytrityl 2-OTBDMS-N2-Isobutyryl Guanosine (PNS)	63.5400	0.289	Kg/Annum
2,2 BIS [-(2INDENYL)BIPHENYL]ZICRONIUM(IV) CHLORIDE	600.000	58.024	Kg/Annum
4,4DIMETHOXYTRITYL CHLORIDE (DMT-CL)	15000.000	14461.760	Kg/Annum
1-CYANO CYCLOBUTANE-1,2-DICARBOXYLIC ACID DIMETHYL EASTER / TRANSDIACID	3072.000	54.180	Kg/Annum
5-ODMT cEt N-isobutryl Guanosine-3-OCEPA (Amidite)	18.2400	0.026	Kg/Annum
5-ODMT cEt N-Benzoyl Cytidine-3-OCEPA (Amidite)	18.2400	2.924	Kg/Annum
5-ODMT cEt Uridine (PNS)	18.2400	0.014	Kg/Annum
NAP SUGAR	450.000	197.270	Kg/Annum
Aldol Sugar	150.000	143.070	Kg/Annum
5-ODMT N-Tac deoxy Cytidine 3-CEPA (Amidite)	30.000	0.202	Kg/Annum
5-ODMT-2-OMe N-Benzoyl Adenosine-3-OCEPA (Amidite)	38.000	0.006	Kg/Annum
5-ODMT-2-OMe N-isobutryl Guanosine (PNS)	38.000	0.094	Kg/Annum
5-ODMT-2-OMe N-isobutryl Guanosine-3-OCEPA (Amidite)	38.000	0.014	Kg/Annum
5-ODMT-2-OMe N-Acetyl Cytidine (PNS)	38.000	0.058	Kg/Annum
5-ODMT-2-OMe N-Acetyl Cytidine-3-OCEPA (Amidite)	38.000	0.005	Kg/Annum
5-ODMT-2-OMe Uridine-3-OCEPA (Amidite)	38.000	0.006	Kg/Annum
ANETHOL	180000.000	113924.650	Kg/Annum
5'-ODMT-DEOXYNUCLEOSIDES, PHOSPHORAMIDITES AND SUCCINATE SALTS	120.000	53.200	Kg/Annum
5-ODMT N-Benzoyl deoxy Adenosine-3-OCEPA (Amidite)	120.000	0.470	Kg/Annum
5-ODMT N-isobutryl deoxy Guanosine (PNS)	120.000	65.240	Kg/Annum
5-ODMT N-isobutryl deoxy Guanosine-3-OCEPA (Amidite)	120.000	0.698	Kg/Annum
5-ODMT N-dmf deoxy Guanosine-3-OCEPA (Amidite)	120.000	0.115	Kg/Annum
N-Benzoyl deoxy Cytidine (Diol)	3.2430	0.750	Kg/Annum
5-ODMT N-Benzoyl deoxy Cytidine (PNS)	120.000	0.750	Kg/Annum
5-ODMT N-Acetyl deoxy Cytidine (PNS)	120.000	120.000	Kg/Annum
5-ODMT N-Acetyl deoxy Cytidine-3-OCEPA (Amidite)	120.000	120.000	Kg/Annum
5-ODMT deoxy Thymidine (PNS)	120.000	0.920	Kg/Annum
deoxy Cytidine Monophosphate	3.2430	0.006	Kg/Annum
5-ODMT N-isobutryl deoxy Guanosine (PNS) (Pharma Grade)	3.2430	0.800	Kg/Annum
3-O-Phthalimido-thymidine (dT)	3.2430	0.245	Kg/Annum
3-O-Phthalimido-2-Deoxy Cytidine	3.2430	0.212	Kg/Annum
3-O-Phthalimido-2-Deoxy Adenosine	3.2430	0.296	Kg/Annum
3-O-Phthalimido-2-Deoxy Guanosine	3.2430	0.142	Kg/Annum
DMT-LNA-NUCLEOSIDES & PHOSPHORAMIDITES	87.6920	0.127	Kg/Annum
LNA N-Benzoyl Adenosine (Diol)	3.0000	0.527	Kg/Annum
5-ODMT LNA N-Benzoyl 5-Methyl Cytidine (PNS)	87.6920	0.573	Kg/Annum
5-ODMT LNA N-Benzoyl 5-Methyl Cytidine-3-O-CEPA (Amidite)	87.6920	0.273	Kg/Annum
LNA Thymidine (Diol)	3.000	0.985	Kg/Annum
3-ODMT LNA N-Benzoyl 5-Methyl Cytidine-5-O-CEPA (Reverse Amidite)	3.000	0.012	Kg/Annum
3-ODMT LNA Thymidine-5-O-CEPA (Reverse Amidite)	3.000	0.012	Kg/Annum

NOOTKATONE	5600.400	4068.320	Kg/Annum
R&D Products (Intermidiate chemicals)	760.0800	246.918	Kg/Annum
3G Metallocene	760.080	0.002	Kg/Annum
4-Tert-butylphenoxyAceticAcid	480.000	201.550	Kg/Annum
2,2 BIS [-(2INDENYL)BIPHENYL]ZICRONIUM(IV) CHLORIDE ON SILICA SUPPORT	1200.0000	3.880	Kg/Annum
4-(methylamino)pentan-2-ol dibenzoate (AB)	12000.000	2948.510	Kg/Annum
9,9-bis(methoxymethyl)fluorene (FLU)	12000.000	548.440	Kg/Annum
5-ODMT-N6-Bz-2-Fluoro Adenosine (PNS)	4.800	4.800	Kg/Annum
4-Chloro-4'-hydroxybenzophenone or CHBP or 4-CHBP	86503.200	4240.790	Kg/Annum
GalNAc-2-O-pentanoic Acid OR GalNAc Acetoxy Pentanoic acid	66.000	40.328	Kg/Annum
GalNAc Benzyloxy Pentanoic acid	66.000	38.790	Kg/Annum
Santalol	20004.000	14536.335	Kg/Annum
4-(2-Chloroethyl) Morpholine Hydrochloride (CEM HCI)	20400.000	12099.750	Kg/Annum
Biocide 950	9120.000	168.200	Kg/Annum
2-Methyl-4-isothiazolin-3-one (MIT)	480.000	12.606	Kg/Annum
Biocide 300	9120.000	349.560	Kg/Annum
5-Chloro-2-Methyl-4-isothiazolin-3-one : 2-Methyl-4- isothiazolin-3-one (CMIT/MIT) (3:1)	480.000	57.090	Kg/Annum
Non-hazardous synthetic compounds for research analysis and data OR (Bis Benzyl Ribo Sugar) $$	360.000	149.170	Kg/Annum
5'-ODMT-DEOXYNUCLEOSIDES, PHOSPHORAMIDITES AND SUCCINATE SALTS	120.000	120	Kg/Annum

By Product Name **Consent Quantity Actual Quantity** NA MT/A

UOM

Part-B (Water & Raw Material Consumption)

1) Water Consumption in m3/day		
Water Consumption for	Consent Quantity in m3/day	Actual Quantity in m3/day
Process	223.60	195.59
Cooling	306.00	208.31
Domestic	37.00	33
All others	0.00	90.39
Total	566.60	527.29

2) Effluent Generation in CMD / MLD			
Particulars	Consent Quantity	Actual Quantity	UOM
Trade Effluent	225.3	129	CMD
Sewage Effluent	33	14	CMD

2) Product Wise Process Water Consumption (cubic meter of process water per unit of product)

Name of Products (Production)

During the Previous financial Year

During the current Financial year

UOM

Substituted Triazine Derivative / CG 29-1127 / 4-[4,6- bis(2,4-dimethyl phenyl) -1,3,5-triazine-2yl]-1,3 Benzenediol	80.5	74.72	CMD
4-Methyl –2-Thiomethyl Pyrimidine	0	0.025	CMD
4-HEXYL RESORCINOL	15	14	CMD
p-Nitro Phenyl Phosphate – Disodium Salt Hexahydrate OR PNPP DiNa	0	0.2	CMD
p-Nitro Phenyl Phosphate – Ditris Salt OR PNPP Ditris	0	0.2	CMD
5-DMT-2-OTBDMS-RNA PHOSPHORAMITE AND DERIVATIVES	0	1.502	CMD
5-O-Dimethoxytrityl 2-OTBDMS-N2-Isobutyryl Guanosine (PNS)	0	0.196	CMD
2,2 BIS [-(2INDENYL)BIPHENYL]ZICRONIUM(IV) CHLORIDE	0.12	0.051	CMD
4,4DIMETHOXYTRITYL CHLORIDE (DMT-CL)	2.4	2.45	CMD
1-CYANO CYCLOBUTANE-1,2-DICARBOXYLIC ACID DIMETHYL EASTER / TRANSDIACID	0.13	0.53	CMD
5-ODMT cEt N-isobutryl Guanosine-3-OCEPA (Amidite)	0	0.36	CMD
5-ODMT cEt N-Benzoyl Cytidine-3-OCEPA (Amidite)	0	0.368	CMD
5-ODMT cEt Uridine (PNS)	0	0.003	CMD
NAP SUGAR	0.2	0.662	CMD
Aldol Sugar	0	0.045	CMD
5-ODMT N-Tac deoxy Cytidine 3-CEPA (Amidite)	0	0.3	CMD
5-ODMT-2-OMe N-Benzoyl Adenosine-3-OCEPA (Amidite)	0	0.196	CMD
5-ODMT-2-OMe N-isobutryl Guanosine (PNS)	0	0.196	CMD
5-ODMT-2-OMe N-isobutryl Guanosine-3-OCEPA (Amidite)	0	0.196	CMD
5-ODMT-2-OMe N-Acetyl Cytidine (PNS)	0	0.196	CMD
5-ODMT-2-OMe N-Acetyl Cytidine-3-OCEPA (Amidite)	0	0.196	CMD
5-ODMT-2-OMe Uridine-3-OCEPA (Amidite)	0	0.112	CMD
ANETHOL	6	6	CMD
5'-ODMT-DEOXYNUCLEOSIDES, PHOSPHORAMIDITES AND SUCCINATE SALTS	0	0.011	CMD
5-ODMT N-Benzoyl deoxy Adenosine-3-OCEPA (Amidite)	0	0.011	CMD
5-ODMT N-isobutryl deoxy Guanosine (PNS)	0	0.011	CMD
5-ODMT N-isobutryl deoxy Guanosine-3-OCEPA (Amidite)	0	0.011	CMD
5-ODMT N-dmf deoxy Guanosine-3-OCEPA (Amidite)	0	0.011	CMD
N-Benzoyl deoxy Cytidine (Diol)	0	0.011	CMD
5-ODMT N-Benzoyl deoxy Cytidine (PNS)	0	0.011	CMD
5-ODMT N-Acetyl deoxy Cytidine (PNS)	0	28.9	CMD
5-ODMT N-Acetyl deoxy Cytidine-3-OCEPA (Amidite)	0	0.011	CMD
5-ODMT deoxy Thymidine (PNS)	0	0.011	CMD
deoxy Cytidine Monophosphate	0	0.011	CMD
5-ODMT N-isobutryl deoxy Guanosine (PNS) (Pharma Grade)	0	0.011	CMD
3-O-Phthalimido-thymidine (dT)	0	0.011	CMD
3-O-Phthalimido-2-Deoxy Cytidine	0	0.011	CMD
3-O-Phthalimido-2-Deoxy Adenosine	0	0.011	CMD
3-O-Phthalimido-2-Deoxy Guanosine	0	0.011	CMD
DMT-LNA-NUCLEOSIDES & PHOSPHORAMIDITES	0.37	0.038	CMD

LNA N-Benzoyl Adenosine (Diol)	0	0.038	CMD
5-ODMT LNA N-Benzoyl 5-Methyl Cytidine (PNS)	0	0.038	CMD
5-ODMT LNA N-Benzoyl 5-Methyl Cytidine-3-O-CEPA (Amidite)	0	0.038	CMD
LNA Thymidine (Diol)	0	0.038	CMD
3-ODMT LNA N-Benzoyl 5-Methyl Cytidine-5-O-CEPA (Reverse Amidite)	0	0.038	CMD
3-ODMT LNA Thymidine-5-O-CEPA (Reverse Amidite)	0	0.038	CMD
NOOTKATONE	0.66	0.068	CMD
R&D Products (Intermidiate chemicals)	1	1	CMD
3G Metallocene	0	0	CMD
4-Tert-butylphenoxyAceticAcid	0	0.25	CMD
2,2 BIS [-(2INDENYL)BIPHENYL]ZICRONIUM(IV) CHLORIDE ON SILICA SUPPORT	0	0	CMD
4-(methylamino)pentan-2-ol dibenzoate (AB)	0.6	0.6	CMD
9,9-bis(methoxymethyl)fluorene (FLU)	0.5	0.5	CMD
5-ODMT-N6-Bz-2-Fluoro Adenosine (PNS)	0	0.001	CMD
4-Chloro-4'-hydroxybenzophenone or CHBP or 4-CHBP	0	3.256	CMD
GalNAc-2-O-pentanoic Acid OR GalNAc Acetoxy Pentanoic acid	0	0.06	CMD
GalNAc Benzyloxy Pentanoic acid	0	0.06	CMD
Santalol	0	1.38	CMD
4-(2-Chloroethyl) Morpholine Hydrochloride (CEM HCl)	0	0.2	CMD
Biocide 950	0	3.36	CMD
2-Methyl-4-isothiazolin-3-one (MIT)	0	0.1	CMD
Biocide 300	0	0.45	CMD
5-Chloro-2-Methyl-4-isothiazolin-3-one : 2-Methyl-4- isothiazolin-3-one (CMIT/MIT) (3:1)	0	0.45	CMD
Non-hazardous synthetic compounds for research analysis and data OR (Bis Benzyl Ribo Sugar) $$	0	0.045	CMD
5'-ODMT-DEOXYNUCLEOSIDES, PHOSPHORAMIDITES AND SUCCINATE SALTS	0	0.011	CMD

3) Raw Material Consumption (Consumption of raw material per unit of product)

Name of Raw Materials	During the Previous financial Year	During the current Financial year	UOM
Cynuric Chloride	348.80	235.200	MT/A
Aluminium Chloride	788.16	470.403	MT/A
Resorcinol	239.83	339.549	MT/A
Xylene	402.78	271.620	MT/A
ODCB	33.70	15.025	MT/A
Methanol	261.061	472.252	MT/A
Heptane	160.57	101.885	MT/A
NaCl	65.45	29.300	MT/A
MIBK	44.75	57.090	MT/A
Claracel	0.23	0.096	MT/A
Sulphuric Acid	631.30	877.184	MT/A

Soda Ash	25.25	16.050	MT/A
Ammonia	5.72	1.680	MT/A
Caustic Lye	99.646	208.371	MT/A
1-4-DIOXANE	2.996	7.339	MT/A
3,5 Xylenol	2.220	1.200	MT/A
4-Chlorobenzoyl Chloride	2.202	2.491	MT/A
ACETIC ACID GLACIAL	1.355	30.197	MT/A
ACETONE	8.087	63.289	MT/A
ACETONITRILE	4.945	23.921	MT/A
ACETYL ACETONE	1.575	8.202	MT/A
ACETYL CHLORIDE	5.633	16.636	MT/A
Acrylonitrile [107-13-1]	0	7.502	MT/A
ALUMINA [ALUMINIUM OXIDENEUTRAL] CAS NO1	0	3.752	MT/A
ALUMINIUM CHLORIDE (ANH)	0	928.206	MT/A
ANISOLE	74.011	257.700	MT/A
BENZO TRICHLORIDE	7.824	20.243	MT/A
BENZOYL CHLORIDE LR/AR	2.412	12.167	MT/A
BORON TRIFLUORIDE ETHYL -ETHER COMPLEX	0	6.498	MT/A
CALCIUM HYDROXIDE	0	2.000	MT/A
CAPROIC ACID	0	3.318	MT/A
CHBP Crude	0	5.685	MT/A
CHLOROFORM	2.793	29.624	MT/A
CITRIC ACID	0	2.819	MT/A
CYANURIC CHLORIDE	0	240.750	MT/A
CYCLOHEXANE	0	20.859	MT/A
DI ETHYL ETHER(ETHER SOLVENT I.P.)	5.803	58.222	MT/A
DICHLOROMETHANE (MDC)	341.298	736.768	MT/A
DIETHYL ETHER DRIED	8.318	10.213	MT/A
DIMETHYL ACETAMIDE	1.648	58.017	MT/A
DIMETHYL FORMAMIDE (DMF)	7.673	77.406	MT/A
DIMETHYL SULPHATE	0	1.049	MT/A
DIMETHYL SULPHOXIDE	5.501	6.795	MT/A
Distilled DIMETHYL ACETAMIDE	0	26.768	MT/A
D-Mannose, [3458-28-4]	0	8.422	MT/A
DRY 9,9-bis(hydroxymethyl)Fluorene(BHMF)	0	1.370	MT/A
ETHYL ACETATE	73.184	299.386	MT/A
Ethyl-2-Fluoroacetate [459-72-3]	0	5.062	MT/A
Ethyl-2-fluoropropionyl acetate (Crude)	0	3.545	MT/A
Ethyl-2-Fluoropropionyl Acetate Distille	0	1.110	MT/A
ETHYLENE DI CHLORIDE	20.285	88.286	MT/A
FERRIC ALUM	0	27.680	MT/A

HEXANE	187.547	434.575	MT/A
HYDROCHLORIC ACID	22.375	66.116	MT/A
Hydroxy Ethyl Morpholein	5.263	13.582	MT/A
INDENE	0	2.274	MT/A
ISOOCTANE	2.369	4.126	MT/A
ISOPROPANOL (IPA)ISOPROPYL ALCOHOL	2.936	3.843	MT/A
LIQUOR AMMONIA	0	3.938	MT/A
META-XYLENE	0	287.010	MT/A
METHYL CYCLOHEXANE	0	20.951	MT/A
METHYL HEPTYL KETONE	0	1.200	MT/A
METHYL ISOBUTYL KETONE	0	60.545	MT/A
METHYL TERT BUTYL ETHER	3.470	91.407	MT/A
MONO CHLORO BENZENE	15.298	15.396	MT/A
MONOMETHYLAMINE 40% INWATER - LR	1.497	16.211	MT/A
N-BUTYL LITHIUM CYLINDER15% IN (1.6MOLAR	4.934	5.852	MT/A
N-HEPTANE [ISOMIX]- LOCAL	0	114.074	MT/A
NICKEL ALUMINIUM ALLOY	2.979	22.653	MT/A
NITRIC ACID	0	3.770	MT/A
N-N,DIMETHYL ACETAMIDE	0	1.128	MT/A
N-N-N-TETRA METHYL ETHYLENE DIAMINE (1.184	1.701	MT/A
ORTHO DI CHLORO BENZENE	0	20.535	MT/A
PET ETHER (100-120)	0.753	10.347	MT/A
PHOSPHOROUS OXYCHLODIRE	0	2.133	MT/A
Potassium acetate	0	34.603	MT/A
POTASSIUM HYDROGEN	0	1.007	MT/A
POTASSIUM HYDROGEN SULPHATE	0	1.230	MT/A
Potassium Hydroxide (Powder)	0	1.197	MT/A
POTASSIUM HYDROXIDE FLAKE	2.278	95.030	MT/A
POTASSIUM IODIDE 99%	0	2.897	MT/A
PROPIONYL CHLORIDE	60.425	182.593	MT/A
PYRIDINE	7.155	32.705	MT/A
RANY NICKEL [8030]	0.920	3.280	MT/A
Santalene oil	0	37.658	MT/A
SODA ASH	0	17.046	MT/A
SODIUM BIRCARBONATE	15.667	73.981	MT/A
SODIUM BISULPHITE	0	5.217	MT/A
SODIUM CHLORIDE FINE SALT	25.339	72.419	MT/A
SODIUM CLORIDE POWDER	0	36.448	MT/A
Sodium Ethoxide	0	4.991	MT/A
SODIUM HYDROXIDE PELLETS (CAUSTIC SODA F	8.814	27.595	MT/A
Sodium hypochlorite Solution (10-14% Cl2	17.591	238.989	MT/A

sodium meta bisulphite	0	1.200	MT/A
SODIUM METHOXIDE SOLUTION 30% IN METHANO	0	4.798	MT/A
SODIUM SULPHATE ANHYDROUS	2.200	6.031	MT/A
SOLVENT-A	11.948	139.474	MT/A
TERT BUTYL HYDROPEROXIDE	2.709	3.867	MT/A
TETRA BUTYL AMMONIUM HYDROXIDE 40% IN ME	1.949	2.031	MT/A
TETRAHYDROFURAN (THF)	9.459	11.299	MT/A
Thionyl Chloride	8.099	7.825	MT/A
THMPC (80% in H2O) / Tetrakis(hydroxymet	0	21.065	MT/A
TOLUENE	40.676	74.332	MT/A
TRI ETHYL AMINE	0	9.382	MT/A
TRI METHYL BORATE	1.189	1.461	MT/A
TRI METHYL CHLOROSILANE	0	1.036	MT/A
VALENCENE 80	2.7	6.692	MT/A

	4)	Fuel	Consumption
--	----	------	-------------

Fuel Name	Consent quantity	Actual Quantity	UOM
Briquette	10950	5560.17	MT/A
HSD	5913	213.62	MT/A

Part-C

Pollution discharged to environment/unit of output (Parameter as specified in the consent issued)
[A] Water

Pollutants Detail	Quantity of Pollutants discharged (kL/day)	Concentration of Pollutants discharged(Mg/Lit) Except PH,Temp,Colour	Percentage of variation from prescribed standards with reasons		
	Quantity	Concentration	%variation	Standard	Reason
рН	8.5	7.87	NA	NA	NA
TDS	2100	797	NA	NA	NA
COD	250	110.75	NA	NA	NA
BOD	100	45	NA	NA	NA
Oil and Grease	10	1	NA	NA	NA
chlorides	600	411.5	NA	NA	NA
sulphates	1000	30.86	NA	NA	NA
phenols	5	0.01	NA	NA	NA
Total Residual Chlorine	1	0	NA	NA	NA
TAN	50	20.2	NA	NA	NA
Free Ammonical Nitrogen	4	0.615	NA	NA	NA
Phosphate	5	1.145	NA	NA	NA
Total Suspended Solids	100	14	NA	NA	NA
Cyanide	0.2	0.02	NA	NA	NA

Pollutants Detail	Pollutant		Concentration of Podischarged (Mg/NM3		from p	ntage of variation rescribed ords with reasons	Standard	Reason
SPM/TPM	150		114.9		NA		NA	NA
SO2	120		22.09		NA		NA	NA
Part-D								
HAZARDOUS WAS	STES							
Hazardous Waste	Туре			Total Du Financia	uring Previo	ous Total Durin Financial ye		иом
5.1 Used or spent o	il			1.03	ii yeui	1.02		MT/A
20.3 Distillation res	idues			138.45		61.582		MT/A
37.3 Concentration	or evaporat	ion residues		173.93		84		MT/A
35.3 Chemical slud	ge from was	te water treat	tment	65.28		32.08		MT/A
33.1 Empty barrels chemicals /wastes	/containers	/liners contan	ninated with hazardous	30.69		15.49		MT/A
38.2 Spent acid				389.55		298.75		MT/A
38.2 Spent acid				853.13		171.70		MT/A
20.2 Spent solvents	5			326.10		374.39		MT/A
Other Hazardous W	aste			6893.07		5406.41		MT/A
2) From Pollution	Control Fa	ncilities						
Hazardous Waste	Туре		g Previous Financial y	year		g Current Financia	l year	UOM
0		0			0			MT/A
Part-E								
SOLID WASTES								
1) From Process Non Hazardous W	/aste Type	Total Durin	ng Previous Financial	vear	Total During	g Current Financial	vear l	JOM
Empty drums (clear		2267	3	_	1405	,	_	los./Y
Ash from Briquette	boiler	1792030		Ç	962510		k	(g/Annum
2) From Pollution Non Hazardous W			al During Previous Fil	nancial yea	r Total l	During Current Fina	ncial year	иом
NA		0			0			MT/A
3) Quantity Recyc	cled or Re-	utilized with	in the					
Waste Type			Total Durii year	ng Previous	Financial	Total During Curre	ent Financia	I UOM
0			0			0		MT/A
Part-F								

Please specify the characteristics(in terms of concentration and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

1) Hazardous Waste

Type of Hazardous Waste Generated	Qty of Hazardous Waste	иом	Concentration of Hazardous Waste
5.1 Used or spent oil	1.02	MT/A	NA
20.3 Distillation residues	61.582	MT/A	NA
37.3 Concentration or evaporation residues	84	MT/A	NA
35.3 Chemical sludge from waste water treatment	32.08	MT/A	NA
33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	15.49	MT/A	NA
38.2 Spent acid	298.75	MT/A	NA
38.2 Spent acid	171.70	MT/A	NA
20.2 Spent solvents	374.39	MT/A	NA
Other Hazardous Waste	5406.41	MT/A	NA

2) Solid Waste

Type of Solid Waste Generated	Qty of Solid Waste	UOM	Concentration of Solid Waste
NA	0	MT/A	NA

Part-G

Impact of the pollution Control measures taken on conservation of natural resources and consequently on the cost of production.

Description	Reduction in Water Consumption (M3/day)	Reduction in Fuel & Solvent Consumption (KL/day)	Reduction in Raw Material (Kg)		Capital Investment(in Lacs)	Reduction in Maintenance(in Lacs)
Domestic	0	0	0	0	0	0

Part-H

Additional measures/investment proposal for environmental protection abatement of pollution, prevention of pollution. [A] Investment made during the period of Environmental

Statement

Detail of measures for Environmental Protection Environmental Protection Measures (Lacks)

For ETP O & M O & M

[B] Investment Proposed for next Year

Detail of measures for Environmental Protection Environmental Protection MeasuresO & M

Capital Investment (Lacks)

O & M

Part-I

Any other particulars for improving the quality of the environment.

Particulars

Innovassynth Technologies (I) LTD

Name & Designation

Mr. Sanjay Chowrasia, AVP-EHS

UAN No:

MPCB-ENVIRONMENT_STATEMENT-0000035962

Submitted On:

Annexure XIV Ambient Air Quality Monitoring reports

QCI-NABET accredited EIA consultant, ISO 9001:2015 Certified Company Laboratory Gazetted by MoEF & Certified by ISO 45001 - 2018

One-stop Environmental Solution. [Formerly Waste Encare India Pvt. Ltd.]

Plot No. A - 288, Road No. 16 Z, Opp. Agriculture Office Bus-stop, Thane Industrial Area, MIDC (Wagle Estate) Thane (West) - 400 604. Maharashtra, India. • Tel.: 91-022-2580 1546 / 9920093829 / 7208579136

Email: mktg@goldfinchengg.com, accounts@goldfinchengg.com, lab@goldfinchengg.com / Website: www.goldfinchengg.com

QF/LA/10-A

Report Ref. No. : GFL/AA/R/21/09- 146

Report Date: 08.10.2021

Analysis Report For Ambient Air Monitoring

Name of the Industry :	M/s Innovassynth Technologies (India) Ltd. Khopoli.			
Date of Sampling :	29.09.2021	Sample Description :	Ambient	
Date of Receipt of Sample :	01.10.2021	Sample Collected by :	Laboratory	
Date of Analysis Started :	02.10.2021	Date of Analysis Completed :	08.10.2021	

Sample Code No.	GFL/AA/21/09-146	Limits	Units	Test Method
Location	Near Main Gate			
Date/Duration	29.09.021			
PM 10	41.02	100	μg/m ³	IS 5182 (part 23):2006 Reaffirmed – 2017 & CPCB (NAAQS volume 1)
PM 2.5	18.80	60	µg/m³	CPCB (NAAQS volume 1)
SO ₂ conc.	12.53	80	μg/m³	IS 5182 (part 2):2001 Reaffirmed -2017 & CPCB (NAAQS volume 1)
NOx conc.	47.42	80	µg/m³	IS 5182 (part 6):2006 Reaffirmed – 2017 & CPCB (NAAQS volume 1)
Lead	0.08	01	µg/m³	CPCB (NAAQS volume 1)
Ammonia	45.87	400	µg/m³	CPCB (NAAQS volume 1)
Carbon Monoxide	ND	04	mg/m ³	IS 5182 (part 10):1999 Reaffirmed -2014
Arsenic	ND	06	ng/m³	CPCB (NAAQS volume 1)
Nickel	15.63	20	ng/m ³	CPCB (NAAQS volume 1)
Ozone	<39.0	180	µg/m³	IS 5182 (part 9):1974 Reaffirmed -2014
Benzene	2.50	05	µg/m³	IS 5182 (part 11):2006 Reaffirmed - 2017
Benzo(a)pyrene	<0.1	01	ng/m³	IS 5182 (part 12):2004 Reaffirmed – 2014 & CPCB (NAAQS volume 1)
Sampling carried out Goldfinch/INST-HVS/ Calibrated on: 03.06	37	Sampling GOLDFIN	ICH/INST	out using ADS -ADS/78

Due on

: 02.06.2022

Calibrated on: 14.09.2021

Due on 13.09.2022

Remark- ND= Not Detected

For Goldfinch Engineering Systems Private Limited

Analyzed By

Verified By

Approved By

Bhide

Kellar Govt. Analyst

Lab-In-charge

Director-Lab/Govt. Analyst

Page 1 of 1

PAN No.: AAACW1593P UAN No.: MH33B0010167

GSTIN: 27AAACW1593P1ZP

: MH/THA/37337

PF No. ESIC No. : 34-00-009299-000-0908

Goldfinch Engineering Systems™ Private Limited

QCI-NABET accredited EIA consultant, ISO 9001:2015 Certified Company Laboratory Gazetted by MoEF & Certified by ISO 45001 - 2018

Plot No. A - 288, Road No. 16 Z, Opp. Agriculture Office Bus-stop, Thane Industrial Area, MIDC (Wagle Estate) Thane (West) - 400 604. Maharashtra, India. • Tel.: 91-022-2580 1546 / 9920093829 / 7208579136

Email: mktg@goldfinchengg.com, accounts@goldfinchengg.com, lab@goldfinchengg.com / Website: www.goldfinchengg.com

QF/LA/10-A

Report Ref. No.: GFL/AA/R/21/09-147

Report Date: 08.10.2021

Analysis Report For Ambient Air Monitoring

Name of the Industry:	M/s Innovassynth Technologies (India) Ltd. Khopoli.				
Date of Sampling :	28.09.2021	Sample Description :	Ambient		
Date of Receipt of Sample :	01.10.2021	Sample Collected by :	Laboratory		
Date of Analysis Started :	02.10.2021	Date of Analysis Completed :	08.10.2021		

Sample Code No.	GFL/AA/21/09-147	Limits	Units	Test Method
Location	Near ETP Plant			
Date/Duration	28.09.2021			
PM 10	32.97	100	µg/m³	IS 5182 (part 23):2006 Reaffirmed – 2017 & CPCB (NAAQS volume 1)
PM 2.5	15.86	60	μg/m³	CPCB (NAAQS volume 1)
SO ₂ conc.	12.38	80	µg/m³	IS 5182 (part 2):2001 Reaffirmed -2017 & CPCB (NAAQS volume 1)
NOx conc.	35.39	80	µg/m³	IS 5182 (part 6):2006 Reaffirmed – 2017 & CPCB (NAAQS volume 1)
Lead	0.05	- 01	µg/m³	CPCB (NAAQS volume 1)
Ammonia	32.52	400	μg/m ³	CPCB (NAAQS volume 1)
Carbon Monoxide	ND	04	mg/m ³	IS 5182 (part 10):1999 Reaffirmed -2014
Arsenic	ND	06	ng/m ³	CPCB (NAAQS volume 1)
Nickel	15.34	20	ng/m ³	CPCB (NAAQS volume 1)
Ozone	<39.0	180	µg/m³	IS 5182 (part 9):1974 Reaffirmed -2014
Benzene	2.98	05	μg/m ³	IS 5182 (part 11):2006 Reaffirmed - 2017
Benzo(a)pyrene	<0.1	01	ng/m³	IS 5182 (part 12):2004 Reaffirmed – 2014 & CPCB (NAAQS volume 1)
Sampling carried or Goldfinch/INST-HV3 Calibrated on: 03.0 Due on: 02.0	S/37	GOLDFI Calibrate	g carried NCH/INST ed on : 14 13.09.202	.09.2021

Remark- ND= Not Detected

For Goldfinch Engineering Systems Private Limited

Analyzed By

Verified By

Approved By

Govt. Analyst

Keenar

Lab-In-charge

Director-Lab/Govt. Analyst

Page 1 of 1

PAN No. : AAACW1593P UAN No. : MH33B0010167

GSTIN: 27AAACW1593P1ZP

PF No. : MH/THA/37337 ESIC No. : 34-00-009299-000-0908

Goldfinch Engineering Systems™ Private Limited

QCI-NABET accredited EIA consultant, ISO 9001:2015 Certified Company Laboratory Gazetted by MoEF & Certified by ISO 45001 - 2018

Plot No. A - 288, Road No. 16 Z, Opp. Agriculture Office Bus-stop, Thane Industrial Area, MIDC (Wagle Estate) Thane (West) - 400 604. Maharashtra, India. ● Tel.: 91-022-2580 1546 / 9920093829 / 7208579136

Email: mktg@goldfinchengg.com, accounts@goldfinchengg.com, lab@goldfinchengg.com / Website: www.goldfinchengg.com

QF/LA/10-A

Report Ref. No.: GFL/AA/R/21/09-148

Report Date: 08.10.2021

Analysis Report For Ambient Air Monitoring

Name of the Industry:	M/s Innovassynth Technologies (India) Ltd. Khopoli.				
Date of Sampling :	30.09.2021	Sample Description :	Ambient		
Date of Receipt of Sample :	01.10.2021	Sample Collected by :	Laboratory		
Date of Analysis Started :	02.10.2021	Date of Analysis Completed :	08.10.2021		

Sample Code No.	GFL/AA/21/09-148	Limits	Units	Test Method
Location	Near colony canteen			
Date/Duration	30.09.2021			
PM 10	44.00	100	µg/m³	IS 5182 (part 23):2006 Reaffirmed – 2017 & CPCB (NAAQS volume 1)
PM 2.5	19.63	60	µg/m³	CPCB (NAAQS volume 1)
SO ₂ conc.	12.83	80	µg/m³	IS 5182 (part 2):2001 Reaffirmed -2017 & CPCB (NAAQS volume 1)
NOx conc.	46.20	80	μg/m³	IS 5182 (part 6):2006 Reaffirmed – 2017 & CPCB (NAAQS volume 1)
Lead	0.05	01	μg/m ³	CPCB (NAAQS volume 1)
Ammonia	<17.0	400	µg/m³	CPCB (NAAQS volume 1)
Carbon Monoxide	ND	04	mg/m ³	IS 5182 (part 10):1999 Reaffirmed -2014
Arsenic	ND	06	ng/m ³	CPCB (NAAQS volume 1)
Nickel	13.23	20	ng/m³	CPCB (NAAQS volume 1)
Ozone	<39.0	180	µg/m³	IS 5182 (part 9):1974 Reaffirmed -2014
Benzene	0.73	05	μg/m ³	IS 5182 (part 11):2006 Reaffirmed - 2017
Benzo(a)pyrene	<0.1	01	ng/m³	IS 5182 (part 12):2004 Reaffirmed – 2014 & CPCB (NAAQS volume 1)
Sampling carried of	out using HVS	Samplin	g carried	out using ADS

Goldfinch/INST-HVS/37

Calibrated on: 03.06.2021 : 02.06.2022

GOLDFINCH/INST-ADS/78

Calibrated on: 14.09.2021 Due on 13.09.2022

Remark- ND= Not Detected

For Goldfinch Engineering Systems Private Limited

Analyzed By

1 Kelkar

Govt. Analyst

Verified By

Lab-In-charge

Approved By

Bhida

Director-Lab/Govt. Analyst

Page 1 of 1

PAN No. : AAACW1593P UAN No.: MH33B0010167

GSTIN: 27AAACW1593P1ZP

PF No. : MH/THA/37337 ESIC No.: 34-00-009299-000-0908

Goldfinch Engineering Systems™ Private Limited

QCI-NABET accredited EIA consultant, ISO 9001:2015 Certified Company Laboratory Gazetted by MoEF & Certified by ISO 45001 - 2018

Plot No. A - 288, Road No. 16 Z, Opp. Agriculture Office Bus-stop, Thane Industrial Area, MIDC (Wagle Estate) Thane (West) - 400 604. Maharashtra, India. • Tel.: 91-022-2580 1546 / 9920093829 / 7208579136

Email: mktg@goldfinchengg.com, accounts@goldfinchengg.com, lab@goldfinchengg.com / Website: www.goldfinchengg.com

QF/LA/10-A

Report Ref. No.: GFL/AA/R/21/09-149

Report Date: 08.10.2021

Analysis Report For Ambient Air Monitoring

Name of the Industry:	M/s Innovassynth Technologies (India) Ltd. Khopoli.				
Date of Sampling :	27.09.2021 Sample Description :		Ambient		
Date of Receipt of Sample :	01.10.2021	Sample Collected by :	Laboratory		
Date of Analysis Started :	02.10.2021	Date of Analysis Completed :	08.10.2021		

Sample Code No.	GFL/AA/21/09-149	Limits	Units	Test Method
Location	Near MPP BASF Plant			
Date/Duration	27.09.2021			
PM 10	38.98	100	µg/m³	IS 5182 (part 23):2006 Reaffirmed – 2017 & CPCB (NAAQS volume 1)
PM 2.5	17.96	60	µg/m³	CPCB (NAAQS volume 1)
SO ₂ conc.	19.89	80	µg/m³	IS 5182 (part 2):2001 Reaffirmed -2017 & CPCB (NAAQS volume 1)
NOx conc.	62.02	80	µg/m³	IS 5182 (part 6):2006 Reaffirmed – 2017 & CPCB (NAAQS volume 1)
Lead	0.03	01	µg/m³	CPCB (NAAQS volume 1)
Ammonia	<17.5	400	µg/m³	CPCB (NAAQS volume 1)
Carbon Monoxide	ND	04	mg/m³	IS 5182 (part 10):1999 Reaffirmed -2014
Arsenic	ND	06	ng/m ³	CPCB (NAAQS volume 1)
Nickel	13.34	20	ng/m ³	CPCB (NAAQS volume 1)
Ozone	<39.0	180	µg/m³	IS 5182 (part 9):1974 Reaffirmed -2014
Benzene	0.33	05	μg/m³	IS 5182 (part 11):2006 Reaffirmed - 2017
Benzo(a)pyrene	<0.1	01	ng/m³	IS 5182 (part 12):2004 Reaffirmed – 2014 & CPCB (NAAQS volume 1)
Sampling carried Goldfinch/INST-H' Calibrated on : 03	VS/37	GOLDFI	g carried NCH/INST ed on : 14	

Due on : 02.06.2022

Due on 13.09.2022

Remark- ND= Not Detected

For Goldfinch Engineering Systems Private Limited

Analyzed By

theuros

Verified By

Approved By

Govt. Analyst

Lab-In-charge

Director-Lab/Govt. Analyst

Page 1 of 1

PAN No. : AAACW1593P UAN No.: MH33B0010167

GSTIN: 27AAACW1593P1ZP

PF No. MH/THA/37337 : 34-00-009299-000-0908 ESIC No.

Annexure XV Noise Monitoring Reports **Goldfinch Engineerin**

QCI-NABET accredited EIA consultant, ISO 9001:2015 Certified Company Laboratory Gazetted by MoEF & Certified by ISO 45001 - 2018

One-stop Environmental Solution. [Formerly Waste Encare India Pvt. Ltd.]

Plot No. A - 288, Road No. 16 Z, Opp. Agriculture Office Bus-stop, Thane Industrial Area, MIDC (Wagle Estate) Thane (West) - 400 604. Maharashtra, India. • Tel.: 91-022-2580 1546 / 9920093829 / 7208579136

Email: mktg@goldfinchengg.com, accounts@goldfinchengg.com, lab@goldfinchengg.com / Website: www.goldfinchengg.com

QF/LA/10-C

Report Ref. No.: GFL/AN/R/21/09-161 to 174

Report Date: 08.10.2021

ANALYSIS FOR AMBIENT NOISE MONITORING

Name of the Industry:	M/s Innovas	Khopoli.	
Date of Sampling :	27.09.2021	Sample Description :	Noise
Date of Receipt of Sample :	01.10.2021	Sample Collected by :	Laboratory
Date of Analysis Started :	02.10.2021	Date of Analysis Completed :	08.10.2021

		Ambient	Noise Level	Test Method
Sample Code No	Location	Day dB	Night dB	
GFL/AN/R/21/09-161	Near Main Gate	62.9	60.9	
GFL/AN/R/21/09-162	Near Utility/ PP3,4,5	69.4	65.9	
GFL/AN/R/21/09-163	Near PP1,PP2	69.4	65.9	
GFL/AN/R/21/09-164	MPP Ground Floor	65.4	62.0	
GFL/AN/R/21/09-165	MPP 1 st Floor	65.4	64.4	
GFL/AN/R/21/09-166	MPP 2 nd Floor	65.9	64.4	
GFL/AN/R/21/09-167	DG ON (1000 KVA)	78.4		IS 9989-1981
GFL/AN/R/21/09-168	PP1 Ground Floor	65.9	62.0	Reaffirmed 2014
GFL/AN/R/21/09-169	PP1 1st Floor	66.3	64.4	
GFL/AN/R/21/09-170	PP3/4/5 Ground Floor	66.3	62.0	
GFL/AN/R/21/09-171	PP3/4/5 1st Floor	66.7	64.4	
GFL/AN/R/21/09-172	DG (Area Near Boiler)	68.7	67.0	- 75
GFL/AN/R/21/09-173	Near Boiler	69.9	65.9	
GFL/AN/R/21/09-174	Near PP6	64.4	62.0	
	M.P.C.B. LIMIT	75	70	

Survey carried out using dB meter ID No. GOLDFINCH/INST-DB METER/32

Calibrated On: 23.10.2020 Calibration due: 22.10.2021

For Goldfinch Engineering Systems Private Limited

Analyzed By

Verified By

Approved By

Bliste

Mellor Govt. Analyst

Lab-In-charge

Jalus

Director-Lab/Govt. Analyst

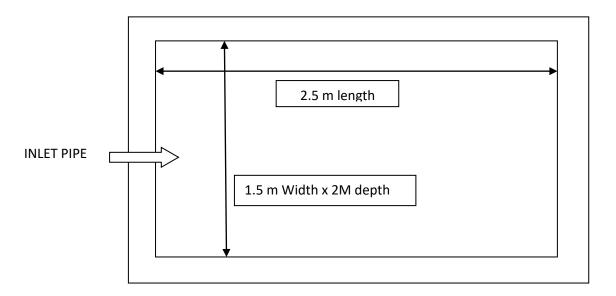
Page 1 of 1

PAN No. : AAACW1593P UAN No.: MH33B0010167

GSTIN: 27AAACW1593P1ZP

MH/THA/37337

ESIC No.: 34-00-009299-000-0908


Annexure XVI Details of Rainwater Harvesting

RAIN WATER HARVESTING

Rain Water Harvesting Structure

SIZE 2.5 x 1.5 x 2.0 mts

Number of Rain Water Harvesting pits: 01 no

Number of Rain Water Harvesting Tank filled with Pebbel, Gravel & sand in layers.

Annexure XVII Newspaper Publication

INNOVASSYNTH TECHNOLOGIES (I) LTD.

REGD. OFFICE & WORKS:

Old Mumbai - Pune Road, Khopoli 410 203, Dist. Raigad, Maharashtra (India) Tel.: +91 - 2192 - 260100, 262828, 263328. Fax : +91 - 2192 - 263628

email: itil@innovassynth.com, Website: www.innovassynth.com CIN No. U24110MH2001PLC134105

Date: 27/04/2018

To.

The Additional PCCF (C),
MoEFCC Regional Office (WCZ),
Ground Floor, East Wing,
New Secretariat Building,
Civil Line, Nagpur – 1

Subject: Advertisement in News papers regarding Environmental clearance letter issued on dated 12th April 2018 by MOEFCC to M/s Innovassynth Technologies (India) Ltd. Khopoli.

Dear Sir,

This to inform you that, M/s Innovassynth Technologies (India) Ltd. Khopoli, was granted for Environmental Clearance certificate (F. No, J-1101 112012017-IA-II(I)) on dated 12th April 2018 by MOEFCC & hard copy of it received by speed post on 23rd April 2018 on company address. Subject to this and as per clause mentioned Environmental Clearance certificate 10.1 (XV), "The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at Website of the Ministry at http://moef.nic.in, This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Regional Office of the Ministry".

Accordingly, we have published advertisement regarding receipt of Environmental clearance letter in local Marathi language news paper "Loksatta" and in English news paper "Indian Express" dated 27/4/2018, Cut out of the both advertisement which was published are attached with this letter for your kind reference.

Thanking You,

Yours Sincerely,

For, Innovassynth Technologies (I) Ltd.

A.Raghuveer

(Chief Finance Officer) Authorized Signatory

Enclosure: 1) Copy of both advertisement papers.

2) Copy of EC certificate.

TO WHOMSOEVER IT MAY CONCERN ENVIRONMENTAL CLEARANCE

1

0

14

st

te

in

10

in is.

be

bn

by

ED

\$5S

We m/s Innovassynth Technologies (I) Limited are pleased to inform that the Ministry of Environment & Climate Change Department, Government of India has accorded Environmental Clearance for expansion of Synthetic Organic Chemicals total 350 TPM of products & 2453 TPM of by products at S. No. 9-24, Wasarang 34-36, Chinchwali, Khopoli, District - Raigad, Maharashtra [File No.: J-11011/20/2017-IA-II(I)] dated 12th April 2018. The copies of clearance letter are available with the Maharashtra Pollution Control Board and also be seen at web site at http://environmentclearance.nic.in

The Daily English Hearpapers

1 /NDIAN EXPRESS"

DT: 27/04/2018

member Estition

Page No # 05

1

П

पयांवरणविषयक परवानगी

आम्ही मे. इनोव्हसिंथ टेक्नॉलॉजिस (इं) लिमिटेड सर्वांना कळवू इच्छितो की, आमच्यां कारखान्याचा पत्ता : सर्व्हे नं. ९-२४, वासरंग, ३४-३६ चिंचवली खोपोली असून, प्रस्तावित कृत्रिम ऑरगॅनिक रसायने यांच्या विस्ताराबाबतच्या प्रस्तावाला एकूण उत्पादने ३५० मे. टन महिना आणि उप-उत्पादने २४५३ मे. टन महिना. (संदर्भ पत्राद्वारे J-11011/20/2017-IAII(I)) दि. १२ एप्रिल २०१८ रोजी पर्यावरणविषयक मंजुरी पर्यावरण मंत्रालय व हवामानातील बदल, भारत सरकारने दिली आहे. याची प्रत महाराष्ट्र प्रदूषण नियंत्रण मंडळाकडे मिळू शकेल, संकेतस्थळ इंटरनेटच्या त्याचप्रमाणे

Di

Ins

ex

AO

.

http://environmentclearance.nic.in वर पाहता येईल.

The Daily Morathi Newspaper a LOKSHITA" MUMBAL BDITION 07. 27/04/2018 Page No. #07